Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(6): 1623-1640.e34, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32946783

RESUMO

Human organoids recapitulating the cell-type diversity and function of their target organ are valuable for basic and translational research. We developed light-sensitive human retinal organoids with multiple nuclear and synaptic layers and functional synapses. We sequenced the RNA of 285,441 single cells from these organoids at seven developmental time points and from the periphery, fovea, pigment epithelium and choroid of light-responsive adult human retinas, and performed histochemistry. Cell types in organoids matured in vitro to a stable "developed" state at a rate similar to human retina development in vivo. Transcriptomes of organoid cell types converged toward the transcriptomes of adult peripheral retinal cell types. Expression of disease-associated genes was cell-type-specific in adult retina, and cell-type specificity was retained in organoids. We implicate unexpected cell types in diseases such as macular degeneration. This resource identifies cellular targets for studying disease mechanisms in organoids and for targeted repair in human retinas.


Assuntos
Diferenciação Celular/genética , Organoides/citologia , Organoides/metabolismo , Retina/citologia , Retina/metabolismo , Análise de Célula Única/métodos , Sinapses/fisiologia , Transcriptoma/genética , Técnicas de Cultura de Células/métodos , Linhagem Celular , Eletrofisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Predisposição Genética para Doença/genética , Humanos , Hibridização In Situ , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Microscopia Eletrônica , Família Multigênica , Naftoquinonas , Organoides/efeitos da radiação , Organoides/ultraestrutura , Retina/patologia , Retina/efeitos da radiação
2.
Genes Dev ; 33(17-18): 1221-1235, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371437

RESUMO

TRIM71/LIN-41, a phylogenetically conserved regulator of development, controls stem cell fates. Mammalian TRIM71 exhibits both RNA-binding and protein ubiquitylation activities, but the functional contribution of either activity and relevant primary targets remain poorly understood. Here, we demonstrate that TRIM71 shapes the transcriptome of mouse embryonic stem cells (mESCs) predominantly through its RNA-binding activity. We reveal that TRIM71 binds targets through 3' untranslated region (UTR) hairpin motifs and that it acts predominantly by target degradation. TRIM71 mutations implicated in etiogenesis of human congenital hydrocephalus impair target silencing. We identify a set of primary targets consistently regulated in various human and mouse cell lines, including MBNL1 (Muscleblind-like protein 1). MBNL1 promotes cell differentiation through regulation of alternative splicing, and we demonstrate that TRIM71 promotes embryonic splicing patterns through MBNL1 repression. Hence, repression of MBNL1-dependent alternative splicing may contribute to TRIM71's function in regulating stem cell fates.


Assuntos
Processamento Alternativo/genética , Regulação da Expressão Gênica/genética , Proteínas de Ligação a RNA/genética , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular Tumoral , Células-Tronco Embrionárias , Humanos , Camundongos , Camundongos Knockout , Mutação , Motivos de Nucleotídeos , Ligação Proteica , Domínios Proteicos/genética , Interferência de RNA , Proteínas de Ligação a RNA/metabolismo
3.
EMBO J ; 40(12): e106818, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33909924

RESUMO

Mouse embryonic stem cells (mESCs) are biased toward producing embryonic rather than extraembryonic endoderm fates. Here, we identify the mechanism of this barrier and report that the histone deacetylase Hdac3 and the transcriptional corepressor Dax1 cooperatively limit the lineage repertoire of mESCs by silencing an enhancer of the extraembryonic endoderm-specifying transcription factor Gata6. This restriction is opposed by the pluripotency transcription factors Nr5a2 and Esrrb, which promote cell type conversion. Perturbation of the barrier extends mESC potency and allows formation of 3D spheroids that mimic the spatial segregation of embryonic epiblast and extraembryonic endoderm in early embryos. Overall, this study shows that transcriptional repressors stabilize pluripotency by biasing the equilibrium between embryonic and extraembryonic lineages that is hardwired into the mESC transcriptional network.


Assuntos
Receptor Nuclear Órfão DAX-1 , Histona Desacetilases , Células-Tronco Embrionárias Murinas/citologia , Animais , Diferenciação Celular , Células Cultivadas , Receptor Nuclear Órfão DAX-1/genética , Receptor Nuclear Órfão DAX-1/metabolismo , Feminino , Fator de Transcrição GATA6/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Camundongos , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo
4.
Nature ; 569(7754): 66-72, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019299

RESUMO

Intestinal organoids are complex three-dimensional structures that mimic the cell-type composition and tissue organization of the intestine by recapitulating the self-organizing ability of cell populations derived from a single intestinal stem cell. Crucial in this process is a first symmetry-breaking event, in which only a fraction of identical cells in a symmetrical sphere differentiate into Paneth cells, which generate the stem-cell niche and lead to asymmetric structures such as the crypts and villi. Here we combine single-cell quantitative genomic and imaging approaches to characterize the development of intestinal organoids from single cells. We show that their development follows a regeneration process that is driven by transient activation of the transcriptional regulator YAP1. Cell-to-cell variability in YAP1, emerging in symmetrical spheres, initiates Notch and DLL1 activation, and drives the symmetry-breaking event and formation of the first Paneth cell. Our findings reveal how single cells exposed to a uniform growth-promoting environment have the intrinsic ability to generate emergent, self-organized behaviour that results in the formation of complex multicellular asymmetric structures.


Assuntos
Intestinos/citologia , Organoides/citologia , Organoides/crescimento & desenvolvimento , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ligação ao Cálcio , Proteínas de Ciclo Celular , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Organoides/metabolismo , Celulas de Paneth/citologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Proteínas de Sinalização YAP
5.
Mol Cell ; 57(1): 23-38, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482508

RESUMO

Alternative splicing of Fas/CD95 exon 6 generates either a membrane-bound receptor that promotes, or a soluble isoform that inhibits, apoptosis. Using an automatized genome-wide siRNA screening for alternative splicing regulators of endogenous transcripts in mammalian cells, we identified 200 genes whose knockdown modulates the ratio between Fas/CD95 isoforms. These include classical splicing regulators; core spliceosome components; and factors implicated in transcription and chromatin remodeling, RNA transport, intracellular signaling, and metabolic control. Coherent effects of genes involved in iron homeostasis and pharmacological modulation of iron levels revealed a link between intracellular iron and Fas/CD95 exon 6 inclusion. A splicing regulatory network linked iron levels with reduced activity of the Zinc-finger-containing splicing regulator SRSF7, and in vivo and in vitro assays revealed that iron inhibits SRSF7 RNA binding. Our results uncover numerous links between cellular pathways and RNA processing and a mechanism by which iron homeostasis can influence alternative splicing.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Genoma , Ferro/metabolismo , Spliceossomos/metabolismo , Receptor fas/genética , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Desferroxamina/farmacologia , Éxons , Estudo de Associação Genômica Ampla , Células HeLa , Homeostase , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Íntrons , Ferro/farmacologia , Quelantes de Ferro/farmacologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Processamento de Serina-Arginina , Spliceossomos/química , Spliceossomos/efeitos dos fármacos , Receptor fas/antagonistas & inibidores , Receptor fas/metabolismo
6.
Mol Cell ; 57(1): 7-22, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25482510

RESUMO

Pre-mRNA splicing relies on the poorly understood dynamic interplay between >150 protein components of the spliceosome. The steps at which splicing can be regulated remain largely unknown. We systematically analyzed the effect of knocking down the components of the splicing machinery on alternative splicing events relevant for cell proliferation and apoptosis and used this information to reconstruct a network of functional interactions. The network accurately captures known physical and functional associations and identifies new ones, revealing remarkable regulatory potential of core spliceosomal components, related to the order and duration of their recruitment during spliceosome assembly. In contrast with standard models of regulation at early steps of splice site recognition, factors involved in catalytic activation of the spliceosome display regulatory properties. The network also sheds light on the antagonism between hnRNP C and U2AF, and on targets of antitumor drugs, and can be widely used to identify mechanisms of splicing regulation.


Assuntos
Processamento Alternativo , Redes Reguladoras de Genes , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo , Apoptose , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sítios de Ligação , Proliferação de Células , Éxons , Células HeLa , Humanos , Íntrons , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Análise de Componente Principal , Ligação Proteica , Mapeamento de Interação de Proteínas , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonucleoproteínas/antagonistas & inibidores , Ribonucleoproteínas/genética , Spliceossomos/química , Fator de Processamento U2AF
7.
Trends Biochem Sci ; 41(1): 33-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26682498

RESUMO

The spliceosome, one of the most complex machineries of eukaryotic cells, removes intronic sequences from primary transcripts to generate functional messenger and long noncoding RNAs (lncRNA). Genetic, biochemical, and structural data reveal that the spliceosome is an RNA-based enzyme. Striking mechanistic and structural similarities strongly argue that pre-mRNA introns originated from self-catalytic group II ribozymes. However, in the spliceosome, protein components organize and activate the catalytic-site RNAs, and recognize and pair together splice sites at intron boundaries. The spliceosome is a dynamic, reversible, and flexible machine that chaperones small nuclear (sn) RNAs and a variety of pre-mRNA sequences into conformations that enable intron removal. This malleability likely contributes to the regulation of alternative splicing, a prevalent process contributing to cell differentiation, homeostasis, and disease.


Assuntos
RNA/química , RNA/metabolismo , Spliceossomos/metabolismo , Humanos , RNA/genética , Spliceossomos/química , Spliceossomos/genética
8.
Genome Res ; 24(2): 212-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24265505

RESUMO

Chronic lymphocytic leukemia (CLL) has heterogeneous clinical and biological behavior. Whole-genome and -exome sequencing has contributed to the characterization of the mutational spectrum of the disease, but the underlying transcriptional profile is still poorly understood. We have performed deep RNA sequencing in different subpopulations of normal B-lymphocytes and CLL cells from a cohort of 98 patients, and characterized the CLL transcriptional landscape with unprecedented resolution. We detected thousands of transcriptional elements differentially expressed between the CLL and normal B cells, including protein-coding genes, noncoding RNAs, and pseudogenes. Transposable elements are globally derepressed in CLL cells. In addition, two thousand genes-most of which are not differentially expressed-exhibit CLL-specific splicing patterns. Genes involved in metabolic pathways showed higher expression in CLL, while genes related to spliceosome, proteasome, and ribosome were among the most down-regulated in CLL. Clustering of the CLL samples according to RNA-seq derived gene expression levels unveiled two robust molecular subgroups, C1 and C2. C1/C2 subgroups and the mutational status of the immunoglobulin heavy variable (IGHV) region were the only independent variables in predicting time to treatment in a multivariate analysis with main clinico-biological features. This subdivision was validated in an independent cohort of patients monitored through DNA microarrays. Further analysis shows that B-cell receptor (BCR) activation in the microenvironment of the lymph node may be at the origin of the C1/C2 differences.


Assuntos
Linfócitos B , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia Linfocítica Crônica de Células B/genética , Idoso , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Humanos , Região Variável de Imunoglobulina , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Ribossomos/genética , Spliceossomos/genética
9.
RNA ; 21(3): 360-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589247

RESUMO

Splicing of mRNA precursors can occur cotranscriptionally and it has been proposed that chromatin structure influences splice site recognition and regulation. Here we have systematically explored potential links between nucleosome positioning and alternative splicing regulation upon progesterone stimulation of breast cancer cells. We confirm preferential nucleosome positioning in exons and report four distinct profiles of nucleosome density around alternatively spliced exons, with RNA polymerase II accumulation closely following nucleosome positioning. Hormone stimulation induces switches between profile classes, correlating with a subset of alternative splicing changes. Hormone-induced exon inclusion often correlates with higher nucleosome occupancy at the exon or the preceding intronic region and with higher RNA polymerase II accumulation. In contrast, exons skipped upon hormone stimulation display low nucleosome densities even before hormone treatment, suggesting that chromatin structure primes alternative splicing regulation. Skipped exons frequently harbor binding sites for hnRNP AB, a hormone-induced splicing regulator whose knock down prevents some hormone-induced skipping events. Collectively, our results argue that a variety of chromatin architecture mechanisms can influence alternative splicing decisions.


Assuntos
Processamento Alternativo/genética , Neoplasias da Mama/genética , Nucleossomos/genética , Progesterona/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Éxons/genética , Feminino , Humanos , Íntrons/genética , Nucleossomos/metabolismo , Progesterona/genética , RNA Polimerase II/genética , Sítios de Splice de RNA/genética , RNA Mensageiro/genética
11.
BMC Genomics ; 16 Suppl 10: S7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26449793

RESUMO

We present a computational framework tailored for the modeling of the complex, dynamic relationships that are encountered in splicing regulation. The starting point is whole-genome transcriptomic data from high-throughput array or sequencing methods that are used to quantify gene expression and alternative splicing across multiple contexts. This information is used as input for state of the art methods for Graphical Model Selection in order to recover the structure of a composite network that simultaneously models exon co-regulation and their cognate regulators. Community structure detection and social network analysis methods are used to identify distinct modules and key actors within the network. As a proof of concept for our framework we studied the splicing regulatory network for Drosophila development using the publicly available modENCODE data. The final model offers a comprehensive view of the splicing circuitry that underlies fly development. Identified modules are associated with major developmental hallmarks including maternally loaded RNAs, onset of zygotic gene expression, transitions between life stages and sex differentiation. Within-module key actors include well-known developmental-specific splicing regulators from the literature while additional factors previously unassociated with developmental-specific splicing are also highlighted. Finally we analyze an extensive battery of Splicing Factor knock-down transcriptome data and demonstrate that our approach captures true regulatory relationships.


Assuntos
Processamento Alternativo/genética , Biologia Computacional , Redes Reguladoras de Genes/genética , Transcriptoma/genética , Éxons/genética , Regulação da Expressão Gênica , Genoma
12.
Sci Adv ; 10(7): eadi7830, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363833

RESUMO

A central mechanism of mTOR complex 1 (mTORC1) signaling is the coordinated translation of ribosomal protein and translation factor mRNAs mediated by the 5'-terminal oligopyrimidine motif (5'TOP). Recently, La-related protein 1 (LARP1) was proposed to be the specific regulator of 5'TOP mRNA translation downstream of mTORC1, while eIF4E-binding proteins (4EBP1/2) were suggested to have a general role in translational repression of all transcripts. Here, we use single-molecule translation site imaging of 5'TOP and canonical mRNAs to study the translation of single mRNAs in living cells. Our data reveal that 4EBP1/2 has a dominant role in repression of translation of both 5'TOP and canonical mRNAs during pharmacological inhibition of mTOR. In contrast, we find that LARP1 selectively protects 5'TOP mRNAs from degradation in a transcriptome-wide analysis of mRNA half-lives. Our results clarify the roles of 4EBP1/2 and LARP1 in regulating 5'TOP mRNAs and provide a framework to further study how these factors control cell growth during development and disease.


Assuntos
Biossíntese de Proteínas , Serina-Treonina Quinases TOR , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Transdução de Sinais
14.
Sci Adv ; 8(51): eabo0694, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563144

RESUMO

The molecular mechanisms that maintain cellular identities and prevent dedifferentiation or transdifferentiation remain mysterious. However, both processes are transiently used during animal regeneration. Therefore, organisms that regenerate their organs, appendages, or even their whole body offer a fruitful paradigm to investigate the regulation of cell fate stability. Here, we used Hydra as a model system and show that Zic4, whose expression is controlled by Wnt3/ß-catenin signaling and the Sp5 transcription factor, plays a key role in tentacle formation and tentacle maintenance. Reducing Zic4 expression suffices to induce transdifferentiation of tentacle epithelial cells into foot epithelial cells. This switch requires the reentry of tentacle battery cells into the cell cycle without cell division and is accompanied by degeneration of nematocytes embedded in these cells. These results indicate that maintenance of cell fate by a Wnt-controlled mechanism is a key process both during homeostasis and during regeneration.

15.
Sci Adv ; 7(50): eabj6897, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34890235

RESUMO

Mechanical input shapes cell fate decisions during development and regeneration in many systems, yet the mechanisms of this cross-talk are often unclear. In regenerating Hydra tissue spheroids, periodic osmotically driven inflation and deflation cycles generate mechanical stimuli in the form of tissue stretching. Here, we demonstrate that tissue stretching during inflation is important for the appearance of the head organizer­a group of cells that secrete the Wnt3 ligand. Exploiting time series RNA expression profiles, we identify the up-regulation of Wnt signaling as a key readout of the mechanical input. In this system, the levels of Wnt3 expression correspond to the levels of stretching, and Wnt3 overexpression alone enables successful regeneration in the absence of mechanical stimulation. Our findings enable the incorporation of mechanical signals in the framework of Hydra patterning and highlight the broad significance of mechanochemical feedback loops for patterning epithelial lumens.

16.
Genome Biol ; 22(1): 171, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34082786

RESUMO

BACKGROUND: Somatic cell reprogramming is the process that allows differentiated cells to revert to a pluripotent state. In contrast to the extensively studied rewiring of epigenetic and transcriptional programs required for reprogramming, the dynamics of post-transcriptional changes and their associated regulatory mechanisms remain poorly understood. Here we study the dynamics of alternative splicing changes occurring during efficient reprogramming of mouse B cells into induced pluripotent stem (iPS) cells and compare them to those occurring during reprogramming of mouse embryonic fibroblasts. RESULTS: We observe a significant overlap between alternative splicing changes detected in the two reprogramming systems, which are generally uncoupled from changes in transcriptional levels. Correlation between gene expression of potential regulators and specific clusters of alternative splicing changes enables the identification and subsequent validation of CPSF3 and hnRNP UL1 as facilitators, and TIA1 as repressor of mouse embryonic fibroblasts reprogramming. We further find that these RNA-binding proteins control partially overlapping programs of splicing regulation, involving genes relevant for developmental and morphogenetic processes. CONCLUSIONS: Our results reveal common programs of splicing regulation during reprogramming of different cell types and identify three novel regulators of this process and their targets.


Assuntos
Processamento Alternativo/genética , Reprogramação Celular/genética , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Antígeno-1 Intracelular de Células T/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Embrião de Mamíferos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
17.
Nat Genet ; 53(3): 379-391, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33603234

RESUMO

Rapid cellular responses to environmental stimuli are fundamental for development and maturation. Immediate early genes can be transcriptionally induced within minutes in response to a variety of signals. How their induction levels are regulated and their untimely activation by spurious signals prevented during development is poorly understood. We found that in developing sensory neurons, before perinatal sensory-activity-dependent induction, immediate early genes are embedded into a unique bipartite Polycomb chromatin signature, carrying active H3K27ac on promoters but repressive Ezh2-dependent H3K27me3 on gene bodies. This bipartite signature is widely present in developing cell types, including embryonic stem cells. Polycomb marking of gene bodies inhibits mRNA elongation, dampening productive transcription, while still allowing for fast stimulus-dependent mark removal and bipartite gene induction. We reveal a developmental epigenetic mechanism regulating the rapidity and amplitude of the transcriptional response to relevant stimuli, while preventing inappropriate activation of stimulus-response genes.


Assuntos
Cromatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Precoces , Proteínas do Grupo Polycomb/genética , Animais , Cromatina/metabolismo , Células-Tronco Embrionárias/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Epigênese Genética , Histonas/metabolismo , Camundongos Transgênicos , Mutação , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rombencéfalo/efeitos dos fármacos , Rombencéfalo/embriologia , Células Receptoras Sensoriais/fisiologia
18.
Am J Med Genet B Neuropsychiatr Genet ; 153B(8): 1434-47, 2010 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-20957647

RESUMO

The dopamine transporter gene (SLC6A3, DAT) has been implicated in the pathogenesis of numerous psychiatric and neurodevelopmental disorders, including schizophrenia (SZ). We previously detected association between SZ and intronic SLC6A3 variants that replicated in two independent Caucasian samples, but had no obvious function. In follow-up analyses, we sequenced the coding and intronic regions of SLC6A3 to identify complete linkage disequilibrium patterns of common variations. We genotyped 78 polymorphisms, narrowing the potentially causal region to two correlated clusters of associated SNPs localized predominantly to introns 3 and 4. Our computational analysis of these intronic regions predicted a novel cassette exon within intron 3, designated E3b, which is conserved among primates. We confirmed alternative splicing of E3b in post-mortem human substantia nigra (SN). As E3b introduces multiple in-frame stop codons, the SLC6A3 open reading frame is truncated and the spliced product may undergo nonsense mediated decay. Thus, factors that increase E3b splicing could reduce the amount of unspliced product available for translation. Observations consistent with this prediction were made using cellular assays and in post-mortem human SN. In mini-gene constructs, the extent of splicing is also influenced by at least two common haplotypes, so the alternative splicing was evaluated in relation to SZ risk. Meta-analyses across genome-wide association studies did not support the initial associations and further post-mortem studies did not suggest case-control differences in splicing. These studies do not provide a compelling link to schizophrenia. However, the impact of the alternative splicing on other neuropsychiatric disorders should be investigated. © 2010 Wiley-Liss, Inc.


Assuntos
Processamento Alternativo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Esquizofrenia/genética , Alelos , Sequência de Bases , Éxons , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Haplótipos , Humanos , Íntrons , Desequilíbrio de Ligação , Masculino , Fases de Leitura Aberta/genética , Polimorfismo de Nucleotídeo Único , Esquizofrenia/metabolismo , Substância Negra/metabolismo
19.
Nat Commun ; 10(1): 3639, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31409787

RESUMO

Human pre-catalytic spliceosomes contain several proteins that associate transiently just prior to spliceosome activation and are absent in yeast, suggesting that this critical step is more complex in higher eukaryotes. We demonstrate via RNAi coupled with RNA-Seq that two of these human-specific proteins, Smu1 and RED, function both as alternative splicing regulators and as general splicing factors and are required predominantly for efficient splicing of short introns. In vitro splicing assays reveal that Smu1 and RED promote spliceosome activation, and are essential for this step when the distance between the pre-mRNA's 5' splice site (SS) and branch site (BS) is sufficiently short. This Smu1-RED requirement can be bypassed when the 5' and 3' regions of short introns are physically separated. Our observations suggest that Smu1 and RED relieve physical constraints arising from a short 5'SS-BS distance, thereby enabling spliceosomes to overcome structural challenges associated with the splicing of short introns.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Citocinas/metabolismo , Íntrons , Splicing de RNA , Spliceossomos/metabolismo , Proteínas Cromossômicas não Histona/genética , Citocinas/genética , Humanos , Precursores de RNA/genética , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Spliceossomos/genética
20.
Cell Rep ; 27(3): 847-859.e6, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995481

RESUMO

Alternative splicing is a prevalent mechanism of gene regulation that is modulated in response to a wide range of extracellular stimuli. Stress-activated protein kinases (SAPKs) play a key role in controlling several steps of mRNA biogenesis. Here, we show that osmostress has an impact on the regulation of alternative splicing (AS), which is partly mediated through the action of p38 SAPK. Splicing network analysis revealed a functional connection between p38 and the spliceosome component SKIIP, whose depletion abolished a significant fraction of p38-mediated AS changes. Importantly, p38 interacted with and directly phosphorylated SKIIP, thereby altering its activity. SKIIP phosphorylation regulated AS of GADD45α, the upstream activator of the p38 pathway, uncovering a negative feedback loop involving AS regulation. Our data reveal mechanisms and targets of SAPK function in stress adaptation through the regulation of AS.


Assuntos
Processamento Alternativo , Coativadores de Receptor Nuclear/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Processamento Alternativo/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Células HeLa , Humanos , Imidazóis/farmacologia , MAP Quinase Quinase 6/metabolismo , Coativadores de Receptor Nuclear/antagonistas & inibidores , Coativadores de Receptor Nuclear/genética , Pressão Osmótica , Fosforilação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Piridinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Cloreto de Sódio/farmacologia , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA