Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
NMR Biomed ; 37(3): e5070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38098204

RESUMO

Biophysical diffusion-weighted imaging (DWI) models are increasingly used in neuroscience to estimate the axonal water fraction ( f AW ), which in turn is key for noninvasive estimation of the axonal volume fraction ( f A ). These models require thorough validation by comparison with a reference method, for example, electron microscopy (EM). While EM studies often neglect the unmyelinated axons and solely report the fraction of myelinated axons, in DWI both myelinated and unmyelinated axons contribute to the DWI signal. However, DWI models often include simplifications, for example, the neglect of differences in the compartmental relaxation times or fixed diffusivities, which in turn might affect the estimation of f AW . We investigate whether linear calibration parameters (scaling and offset) can improve the comparability between EM- and DWI-based metrics of f A . To this end, we (a) used six DWI models based on the so-called standard model of white matter (WM), including two models with fixed compartmental diffusivities (e.g., neurite orientation dispersion and density imaging, NODDI) and four models that fitted the compartmental diffusivities (e.g., white matter tract integrity, WMTI), and (b) used a multimodal data set including ex vivo diffusion DWI and EM data in mice with a broad dynamic range of fibre volume metrics. We demonstrated that the offset is associated with the volume fraction of unmyelinated axons and the scaling factor is associated with different compartmental T 2 and can substantially enhance the comparability between EM- and DWI-based metrics of f A . We found that DWI models that fitted compartmental diffusivities provided the most accurate estimates of the EM-based f A . Finally, we introduced a more efficient hybrid calibration approach, where only the offset is estimated but the scaling is fixed to a theoretically predicted value. Using this approach, a similar one-to-one correspondence to EM was achieved for WMTI. The method presented can pave the way for use of validated DWI-based models in clinical research and neuroscience.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Camundongos , Animais , Axônios , Substância Branca/diagnóstico por imagem , Bainha de Mielina , Microscopia Eletrônica , Encéfalo/diagnóstico por imagem
2.
Neuroimage ; 249: 118906, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032659

RESUMO

Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.


Assuntos
Axônios/ultraestrutura , Microscopia/métodos , Neuroimagem/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Aprendizado Profundo , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
3.
Magn Reson Med ; 82(5): 1804-1811, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31293007

RESUMO

PURPOSE: To propose and validate an efficient method, based on a biophysically motivated signal model, for removing the orientation-dependent part of R2* using a single gradient-recalled echo (GRE) measurement. METHODS: The proposed method utilized a temporal second-order approximation of the hollow-cylinder-fiber model, in which the parameter describing the linear signal decay corresponded to the orientation-independent part of R2* . The estimated parameters were compared to the classical, mono-exponential decay model for R2* in a sample of an ex vivo human optic chiasm (OC). The OC was measured at 16 distinct orientations relative to the external magnetic field using GRE at 7T. To show that the proposed signal model can remove the orientation dependence of R2* , it was compared to the established phenomenological method for separating R2* into orientation-dependent and -independent parts. RESULTS: Using the phenomenological method on the classical signal model, the well-known separation of R2* into orientation-dependent and -independent parts was verified. For the proposed model, no significant orientation dependence in the linear signal decay parameter was observed. CONCLUSIONS: Since the proposed second-order model features orientation-dependent and -independent components at distinct temporal orders, it can be used to remove the orientation dependence of R2* using only a single GRE measurement.


Assuntos
Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Autopsia , Biofísica , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade
4.
Hum Brain Mapp ; 38(7): 3615-3622, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28432780

RESUMO

Non-quantitative MRI is prone to intersubject intensity variation rendering signal intensity level based analyses limited. Here, we propose a method that fuses non-quantitative routine T1-weighted (T1w), T2w, and T2w fluid-saturated inversion recovery sequences using independent component analysis and validate it on age and sex matched healthy controls. The proposed method leads to consistent and independent components with a significantly reduced coefficient-of-variation across subjects, suggesting potential to serve as automatic intensity normalization and thus to enhance the power of intensity based statistical analyses. To exemplify this, we show that voxelwise statistical testing on single-subject independent components reveals in particular a widespread sex difference in white matter, which was previously shown using, for example, diffusion tensor imaging but unobservable in the native MRI contrasts. In conclusion, our study shows that single-subject independent component analysis can be applied to routine sequences, thereby enhancing comparability in-between subjects. Unlike quantitative MRI, which requires specific sequences during acquisition, our method is applicable to existing MRI data. Hum Brain Mapp 38:3615-3622, 2017. © 2017 Wiley Periodicals, Inc.

5.
Eur Radiol ; 27(5): 2206-2215, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27572811

RESUMO

OBJECTIVES: Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). METHODS: 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude |G*| and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. RESULTS: In NMOSD patients, a significant reduction of |G*| was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). CONCLUSIONS: MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. KEY POINTS: • Magnetic resonance elastography reveals diffuse cerebral tissue changes in patients with NMOSD. • Premature tissue softening in NMOSD patients indicates tissue degeneration. • Hypothesis of a widespread cerebral neurodegeneration in form of diffuse tissue alteration.


Assuntos
Encéfalo/diagnóstico por imagem , Técnicas de Imagem por Elasticidade/métodos , Neuromielite Óptica/diagnóstico por imagem , Adulto , Idoso , Atrofia/diagnóstico por imagem , Atrofia/patologia , Encéfalo/patologia , Estudos de Casos e Controles , Cefalometria/métodos , Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neuromielite Óptica/patologia , Projetos Piloto , Viscosidade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
6.
J Magn Reson Imaging ; 44(1): 51-8, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26714969

RESUMO

PURPOSE: To assess if higher-resolution magnetic resonance elastography (MRE) is a technique that can measure the in vivo mechanical properties of brain tissue and is sensitive to early signatures of brain tissue degradation in patients with clinically isolated syndrome (CIS). MATERIALS AND METHODS: Seventeen patients with CIS and 33 controls were investigated by MRE with a 3T MRI scanner. Full-wave field data were acquired at seven drive frequencies from 30 to 60 Hz. The spatially resolved higher-resolution maps of magnitude |G*| and phase angle φ of the complex-valued shear modulus were obtained in addition to springpot model parameters. These parameters were spatially averaged in white matter (WM) and whole-brain regions and correlated with clinical and radiological parameters. RESULTS: Spatially resolved MRE revealed that CIS reduced WM viscoelasticity, independent of imaging markers of multiple sclerosis and clinical scores. |G*| was reduced by 14% in CIS (1.4 ± 0.2 kPa vs. 1.7 ± 0.2 kPa, P < 0.001, 95% confidence interval [CI] [-0.4, -0.1] kPa), while φ (0.66 ± 0.04 vs. 0.67 ± 0.04, P = 0.65, 95% CI [-0.04, 0.02]) remained unaltered. Springpot-based shear elasticity showed only a trend of CIS-related reduction (3.4 ± 0.5 kPa vs. 3.7 ± 0.5 kPa, P = 0.06, 95% CI [-0.6, 0.02] kPa) in the whole brain. CONCLUSION: We demonstrate that CIS leads to significantly reduced elasticity of brain parenchyma, raising the prospect of using MRE as an imaging marker for subtle and diffuse tissue damage in neuroinflammatory diseases. J. Magn. Reson. Imaging 2016;44:51-58.


Assuntos
Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/fisiopatologia , Técnicas de Imagem por Elasticidade/métodos , Epilepsia/patologia , Epilepsia/fisiopatologia , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Diagnóstico Precoce , Módulo de Elasticidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência ao Cisalhamento , Estresse Mecânico
7.
NMR Biomed ; 28(11): 1426-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26373228

RESUMO

The aim of this study was to introduce remote wave excitation for high-resolution cerebral multifrequency MR elastography (mMRE). mMRE of 25-45-Hz drive frequencies by head rocker stimulation was compared with mMRE by remote wave excitation based on a thorax mat in 12 healthy volunteers. Maps of the magnitude |G*| and phase φ of the complex shear modulus were reconstructed using multifrequency dual elasto-visco (MDEV) inversion. After the scan, the subjects and three operators assessed the comfort and convenience of cerebral mMRE using two methods of stimulating the brain. Images were acquired in a coronal view in order to identify anatomical regions along the spinothalamic pathway. In mMRE by remote actuation, all subjects and operators appreciated an increased comfort and simplified procedural set-up. The resulting strain amplitudes in the brain were sufficiently large to analyze using MDEV inversion, and yielded high-resolution viscoelasticity maps which revealed specific anatomical details of brain mechanical properties: |G*| was lowest in the pons (0.97 ± 0.08 kPa) and decreased within the corticospinal tract in the caudal-cranial direction from the crus cerebri (1.64 ± 0.26 kPa) to the capsula interna (1.29 ± 0.14 kPa). By avoiding onerous mechanical stimulation of the head, remote excitation of intracranial shear waves can be used to measure viscoelastic parameters of the brain with high spatial resolution. Therewith, the new mMRE method is suitable for neuroradiological examinations in the clinic.


Assuntos
Encéfalo/anatomia & histologia , Técnicas de Imagem por Elasticidade/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Sistemas Microeletromecânicos/instrumentação , Estimulação Física/instrumentação , Encéfalo/fisiologia , Módulo de Elasticidade/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência ao Cisalhamento/fisiologia , Estresse Mecânico
8.
Neuroimage ; 90: 308-14, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24368262

RESUMO

Magnetic resonance elastography (MRE) is capable of measuring the viscoelastic properties of brain tissue in vivo. However, MRE is still limited in providing high-resolution maps of mechanical constants. We therefore introduce 3D multifrequency MRE (3DMMRE) at 7T magnetic field strength combined with enhanced multifrequency dual elasto-visco (MDEV) inversion in order to achieve high-resolution elastographic maps of in vivo brain tissue with 1mm(3) resolution. As demonstrated by phantom data, the new MDEV-inversion method provides two high resolution parameter maps of the magnitude (|G*|) and the phase angle (ϕ) of the complex shear modulus. MDEV inversion applied to cerebral 7T-3DMMRE data of five healthy volunteers revealed structures of brain tissue in greater anatomical details than previous work. The viscoelastic properties of cortical gray matter (GM) and white matter (WM) could be differentiated by significantly lower values of |G*| and ϕ in GM (21% [P<0.01]; 8%, [P<0.01], respectively) suggesting that GM is significantly softer and less viscous than WM. In conclusion, 3DMMRE at ultrahigh magnetic fields and MDEV inversion open a new window into characterizing the mechanical structure of in vivo brain tissue and may aid the detection of various neurological disorders based on their effects to mechanical tissue properties.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Técnicas de Imagem por Elasticidade/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos , Processamento de Imagem Assistida por Computador , Masculino
9.
Magn Reson Med ; 71(1): 267-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23413115

RESUMO

PURPOSE: Viscoelastic properties of the liver are sensitive to fibrosis. This study proposes several modifications to existing magnetic resonance elastography (MRE) techniques to improve the accuracy of abdominal MRE. METHODS: The proposed method comprises the following steps: (i) wave generation by a nonmagnetic, piezoelectric driver suitable for integration into the patient table, (ii) fast single-shot 3D wave-field acquisition at four drive frequencies between 30 and 60 Hz, and (iii) single-step postprocessing by a novel multifrequency dual parameter inversion of the wave equation. The method is tested in phantoms, healthy volunteers, and patients with portal hypertension and ascites. RESULTS: Spatial maps of magnitude and phase of the complex shear modulus were acquired within 6-8 min. These maps are not subject to bias from inversion-related artifacts known from classic MRE. The spatially averaged modulus for healthy liver was 1.44 ± 0.23 kPa with ϕ = 0.492 ± 0.064. Both parameters were significantly higher in the spleen (2.29 ± 0.97 kPa, P = 0.015 and 0.749 ± 0.144, P = 6.58·10(-5) , respectively). CONCLUSION: The proposed method provides abdominal images of viscoelasticity in a short time with spatial resolution comparable to conventional MR images and improved quality without being compromised by ascites. The new setup allows for the integration of abdominal MRE into the clinical workflow.


Assuntos
Técnicas de Imagem por Elasticidade/instrumentação , Técnicas de Imagem por Elasticidade/métodos , Hipertensão Portal/fisiopatologia , Interpretação de Imagem Assistida por Computador/métodos , Fígado/fisiopatologia , Sistemas Microeletromecânicos/instrumentação , Baço/fisiopatologia , Adulto , Algoritmos , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento , Feminino , Humanos , Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/instrumentação , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Viscosidade
10.
Mol Imaging ; 12(2): 83-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23415396

RESUMO

Cell tracking with magnetic resonance imaging (MRI) is mostly performed using superparamagnetic iron oxide (SPIO) nanoparticle-labeled cells. However, negative contrast in T2*-weighted imaging is inherently problematic as a homogeneous background signal is required to visualize the negative signal. In a magnetic field, SPIO-labeled cells develop their own magnetization, distorting the main field. We show here a method to visualize these distortions and use them to identify single cells with increased sensitivity and certainty compared to T2* images. We labeled HeLa cells with SPIOs, suspended labeled cells in agarose to make phantoms, and performed high-resolution gradient-echo MRI. Phase images were processed to enhance the visibility of single cells. To quantify SPIO content, we generated a map of frequency differences. MRI of cell phantoms showed that single cells could be detected at concentrations ranging from 200 to 10,000 cells mL(-1). Postprocessing of the magnetic resonance phase images reveals characteristic microfield distortions, increasing dramatically the sensitivity of cell recognition, compared to unprocessed T2* images. Calculating frequency shifts and comparing microfield distortions to simulations permit estimation of the nanoparticle load of single cells. We expect the ability to detect and quantify the iron load of single cells to prove useful in studies of cell trafficking, especially in rare cell populations.


Assuntos
Imageamento por Ressonância Magnética/métodos , Células HeLa , Humanos
11.
Magn Reson Med ; 69(3): 667-74, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22529038

RESUMO

Noninvasive image-based measurement of intrinsic tissue pressure is of great interest in the diagnosis and characterization of diseases. Therefore, we propose to exploit the capability of phase-contrast MRI to measure three-dimensional vector fields of tissue motion for deriving volumetric strain induced by external vibration. Volumetric strain as given by the divergence of mechanical displacement fields is related to tissue compressibility and is thus sensitive to the state of tissue pressure. This principle is demonstrated by the measurement of three-dimensional vector fields of 50-Hz oscillations in a compressible agarose phantom and in the lungs of nine healthy volunteers. In the phantom, the magnitude of the oscillating divergence increased by about 400% with 4.8 bar excess air pressure, corresponding to an effective-medium compression modulus of 230 MPa. In lungs, the averaged divergence magnitude increased in all volunteers (N = 9) between 7 and 78% from expiration to inspiration. Measuring volumetric strain by MRI provides a compression-sensitive parameter of tissue mechanics, which varies with the respiratory state in the lungs. In future clinical applications for diagnosis and characterization of lung emphysema, fibrosis, or cancer, divergence-sensitive MRI may serve as a noninvasive marker sensitive to disease-related alterations of regional elastic recoil pressure in the lungs.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Pulmão/anatomia & histologia , Pulmão/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Física/métodos , Adulto , Algoritmos , Módulo de Elasticidade/fisiologia , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vibração
12.
Neuroimage ; 49(3): 2520-5, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19539039

RESUMO

In multiple sclerosis (MS), diffuse brain parenchymal damage exceeding focal inflammation is increasingly recognized to be present from the very onset of the disease, and, although occult to conventional imaging techniques, may present a major cause of permanent neurological disability. Subtle tissue alterations significantly influence biomechanical properties given by stiffness and internal friction, that--in more accessible organs than the brain--are traditionally assessed by manual palpation during the clinical exam. The brain, however, is protected from our sense of touch, and thus our current knowledge on cerebral viscoelasticity is very limited. We developed a clinically feasible magnetic resonance elastography setup sensitive to subtle alterations of brain parenchymal biomechanical properties. Investigating 45 MS patients revealed a significant decrease (13%, P<0.001) of cerebral viscoelasticity compared to matched healthy volunteers, indicating a widespread tissue integrity degradation, while structure-geometry defining parameters remained unchanged. Cerebral viscoelasticity may represent a novel in vivo marker of neuroinflammatory and neurodegenerative pathology.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/patologia , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Esclerose Múltipla/patologia , Adulto , Mapeamento Encefálico/instrumentação , Técnicas de Imagem por Elasticidade/instrumentação , Feminino , Humanos , Imageamento por Ressonância Magnética/instrumentação , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Adulto Jovem
13.
J Magn Reson Imaging ; 32(3): 577-83, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20815054

RESUMO

PURPOSE: To investigate the feasibility of quantitative in vivo ultrahigh field magnetic resonance elastography (MRE) of the human brain in a broad range of low-frequency mechanical vibrations. MATERIALS AND METHODS: Mechanical vibrations were coupled into the brain of a healthy volunteer using a coil-driven actuator that either oscillated harmonically at single frequencies between 25 and 62.5 Hz or performed a superimposed motion consisting of multiple harmonics. Using a motion sensitive single-shot spin-echo echo planar imaging sequence shear wave displacements in the brain were measured at 1.5 and 7 T in whole-body MR scanners. Spatially averaged complex shear moduli were calculated applying Helmholtz inversion. RESULTS: Viscoelastic properties of brain tissue could be reliably determined in vivo at 1.5 and 7 T using both single-frequency and multifrequency wave excitation. The deduced dispersion of the complex modulus was consistent within different experimental settings of this study for the measured frequency range and agreed well with literature data. CONCLUSION: MRE of the human brain is feasible at 7 T. Superposition of multiple harmonics yields consistent results as compared to standard single-frequency based MRE. As such, MRE is a system-independent modality for measuring the complex shear modulus of in vivo human brain in a wide dynamic range.


Assuntos
Encéfalo/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Vibração , Adulto , Estimulação Elétrica/métodos , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Modelos Teóricos , Valores de Referência , Viscosidade
14.
Neuroimage ; 46(3): 652-7, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19281851

RESUMO

Viscoelasticity is a sensitive measure of the microstructural constitution of soft biological tissue and is increasingly used as a diagnostic marker, e.g. in staging liver fibrosis or characterizing breast tumors. In this study, multifrequency magnetic resonance elastography was used to investigate the in vivo viscoelasticity of healthy human brain in 55 volunteers (23 females) ranging in age from 18 to 88 years. The application of four vibration frequencies in an acoustic range from 25 to 62.5 Hz revealed for the first time how physiological aging changes the global viscosity and elasticity of the brain. Using the rheological springpot model, viscosity and elasticity are combined in a parameter mu that describes the solid-fluid behavior of the tissue and a parameter alpha related to the tissue's microstructure. It is shown that the healthy adult brain undergoes steady parenchymal 'liquefaction' characterized by a continuous decline in mu of 0.8% per year (P<0.001), whereas alpha remains unchanged. Furthermore, significant sex differences were found with female brains being on average 9% more solid-like than their male counterparts rendering women more than a decade 'younger' than men with respect to brain mechanics (P=0.016). These results set the background for using cerebral multifrequency elastography in diagnosing subtle neurodegenerative processes not detectable by other diagnostic methods.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Modelos Neurológicos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Simulação por Computador , Módulo de Elasticidade/fisiologia , Feminino , Dureza/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Viscosidade , Adulto Jovem
15.
Phys Med Biol ; 54(7): 2229-41, 2009 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-19293467

RESUMO

Elasticity is a sensitive measure of the microstructural constitution of soft biological tissues and increasingly used in diagnostic imaging. Magnetic resonance elastography (MRE) uniquely allows in vivo measurement of the shear elasticity of brain tissue. However, the spatial resolution of MRE is inherently limited as the transformation of shear wave patterns into elasticity maps requires the solution of inverse problems. Therefore, an MRE method is introduced that avoids inversion and instead exploits shear wave scattering at elastic interfaces between anatomical regions of different shear compliance. This compliance-weighted imaging (CWI) method can be used to evaluate the mechanical consistency of cerebral lesions or to measure relative stiffness differences between anatomical subregions of the brain. It is demonstrated that CWI-MRE is sensitive enough to reveal significant elasticity variations within inner brain parenchyma: the caudate nucleus (head) was stiffer than the lentiform nucleus and the thalamus by factors of 1.3 +/- 0.1 and 1.7 +/- 0.2, respectively (P < 0.001). CWI-MRE provides a unique method for characterizing brain tissue by identifying local stiffness variations.


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Adulto , Encéfalo/patologia , Ecoencefalografia , Elasticidade , Feminino , Humanos , Masculino , Modelos Biológicos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia , Doenças do Sistema Nervoso/diagnóstico por imagem , Imagens de Fantasmas , Reprodutibilidade dos Testes
16.
Invest Radiol ; 41(12): 841-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17099421

RESUMO

OBJECTIVE: The objective of this study was to introduce an magnetic resonance elastography (MRE) protocol based on fractional motion encoding and planar wave acquisition for rapid measurements of in vivo human liver stiffness. MATERIALS AND METHODS: Vibrations of a remote actuator membrane were fed by a rigid rod to the patient's surface beneath the right costal arch resulting in axial shear deflections of the liver. Data acquisition was performed using a balanced steady-state free precession (bSSFP) sequence incorporating oscillating gradients for motion sensitization. Tissue vibrations of frequency fv = 51 Hz were tuned by twice the sequence repetition time (1/fv = 2TR). Twenty axial images acquired by time-resolved through-plane wave encoding were used for planar elasticity reconstruction. The MRE data acquisition was achieved within 4 breathholds of 17 seconds each. The method was applied to 12 healthy volunteers and 2 patients with diffuse liver disease (fibrosis grade 3). RESULTS: MRE data acquisition was successful in all volunteers and patients. The elastic moduli were measured with values between 1.99 +/- 0.16 and 5.77 +/- 0.88 kPa. Follow-up studies demonstrated the reproducibility of the method and revealed a difference of 0.74 +/- 0.47 kPa (P < 0.05) between the hepatic stiffness of 2 healthy male volunteers. CONCLUSION: bSSFP combined with fractional MRE enables rapid measurement of liver stiffness in vivo. The used actuation principle supports a 2-dimensional analysis of the strain wave field captured by axial wave images. The measured data indicate individual variations of hepatic stiffness in healthy volunteers.


Assuntos
Tecido Elástico/patologia , Elasticidade , Imageamento Tridimensional , Cirrose Hepática/diagnóstico , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Adulto , Algoritmos , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Vibração
17.
PLoS One ; 11(10): e0164617, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27749933

RESUMO

BACKGROUND: The PMP22 gene encodes a protein integral to peripheral myelin. Its deletion leads to hereditary neuropathy with liability to pressure palsies (HNPP). PMP22 is not expressed in the adult central nervous system, but previous studies suggest a role in CNS myelin development. The objective of this study was to identify potential structural and functional alterations in the afferent visual system in HNPP patients. METHODS: Twenty HNPP patients and 18 matched healthy controls (HC) were recruited in a cross-sectional study. Participants underwent neurological examination including visual acuity, visual evoked potential (VEP) examination, optical coherence tomography (OCT), and magnetic resonance imaging with calculation of brain atrophy, regarding grey and white matter, and voxel based morphometry (VBM), in addition answered the National Eye Institute's 39-item Visual Functioning Questionnaire (NEI-VFQ). Thirteen patients and 6 HC were additionally examined with magnetic resonance spectroscopy (MRS). RESULTS: All patients had normal visual acuity, but reported reduced peripheral vision in comparison to HC in the NEI-VFQ (p = 0.036). VEP latency was prolonged in patients (P100 = 103.7±5.7 ms) in comparison to healthy subjects (P100 = 99.7±4.2 ms, p = 0.007). In OCT, peripapillary retinal nerve fiber layer thickness RNFL was decreased in the nasal sector (90.0±15.5 vs. 101.8±16.5, p = 0.013), and lower nasal sector RNFL correlated with prolonged VEP latency (Rho = -0.405, p = 0.012). MRS revealed reduced tNAA (731.4±45.4 vs. 814.9±62.1, p = 0.017) and tCr (373.8±22.2 vs. 418.7±31.1, p = 0.002) in the visual cortex in patients vs. HC. Whole brain volume, grey and white matter volume, VBM and metabolites in a MRS sensory cortex control voxel did not differ significantly between patients and HC. CONCLUSION: PMP22 deletion leads to functional, metabolic and macro-structural alterations in the afferent visual system of HNPP patients. Our data suggest a functional relevance of these changes for peripheral vision, which warrants further investigation and confirmation.


Assuntos
Artrogripose/patologia , Neuropatia Hereditária Motora e Sensorial/patologia , Proteínas da Mielina/genética , Vias Visuais/fisiopatologia , Adulto , Artrogripose/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estudos de Casos e Controles , Estudos Transversais , Potenciais Evocados Visuais/fisiologia , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Neuropatia Hereditária Motora e Sensorial/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Proteínas da Mielina/metabolismo , Retina/diagnóstico por imagem , Deleção de Sequência , Tomografia de Coerência Óptica , Acuidade Visual/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia
18.
Phys Med Biol ; 50(6): 1313-25, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15798324

RESUMO

A method for direct determination of anisotropic elastic coefficients using two-dimensional shear wave patterns is introduced. Thereby, the symmetry of the wave patterns is approximated by a squared elliptic equation yielding an explicit relation between waveform and elasticity. The method is used to analyse MR elastography wave images of the biceps acquired by a continuous harmonic excitation at the distal tendon of the muscle. Typically V-shaped wave patterns were observed in this type of tissue, which could be well reproduced by the proposed elliptic approximation of the waveform assuming incompressibility and a transverse isotropic model of elasticity. Without additional experiments, the analysis of straightness, slope and interferences of the wave fronts enabled us to deduce two Young's moduli and one shear modulus, which fully describe the anisotropy of the elasticity of muscles. The results suggest strong anisotropy of the living human biceps causing a shear wave speed parallel to the muscle fibres that is approximately four times faster than the perpendicular shear wave speed.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Estimulação Física/métodos , Elasticidade , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico
19.
J Neurol ; 262(8): 1927-35, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041613

RESUMO

Autosomal dominant ataxia type 14 (SCA14) is a rare usually adult-onset progressive disorder with cerebellar neurodegeneration caused by mutations in protein kinase C gamma. We set out to examine cerebellar and extracerebellar neurochemical changes in SCA14 by MR spectroscopy. In 13 SCA14 patients and 13 healthy sex- and age-matched controls, 3-T single-voxel brain proton MR spectroscopy was performed in a cerebellar voxel of interest (VOI) at TE = 30 ms to obtain a neurochemical profile of metabolites with short relaxation times. In the cerebellum and in additional VOIs in the prefrontal cortex, motor cortex, and somatosensory cortex, a second measurement was performed at TE = 144 ms to mainly extract the total N-acetyl-aspartate (tNAA) signal besides the signals for total creatine (tCr) and total choline (tCho). The cerebellar neurochemical profile revealed a decrease in glutathione (6.12E-06 ± 2.50E-06 versus 8.91E-06 ± 3.03E-06; p = 0028) and tNAA (3.78E-05 ± 5.67E-06 versus 4.25E-05 ± 5.15E-06; p = 0023) and a trend for reduced glutamate (2.63E-05 ± 6.48E-06 versus 3.15E-05 ± 7.61E-06; p = 0062) in SCA14 compared to controls. In the tNAA-focused measurement, cerebellar tNAA (296.6 ± 42.6 versus 351.7 ± 16.5; p = 0004) and tCr (272.1 ± 25.2 versus 303.2 ± 31.4; p = 0004) were reduced, while the prefrontal, somatosensory and motor cortex remained unaffected compared to controls. Neuronal pathology in SCA14 detected by MR spectroscopy was restricted to the cerebellum and did not comprise cortical regions. In the cerebellum, we found in addition to signs of neurodegeneration a glutathione reduction, which has been associated with cellular damage by oxidative stress in other neurodegenerative diseases such as Parkinson's disease and Friedreich's ataxia.


Assuntos
Cerebelo/metabolismo , Córtex Cerebral/metabolismo , Glutationa/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Ataxias Espinocerebelares/metabolismo , Adulto , Idoso , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Creatina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Glutationa/deficiência , Humanos , Masculino , Pessoa de Meia-Idade
20.
PLoS One ; 8(8): e71807, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977148

RESUMO

Cerebral viscoelastic constants can be measured in a noninvasive, image-based way by magnetic resonance elastography (MRE) for the detection of neurological disorders. However, MRE brain maps of viscoelastic constants are still limited by low spatial resolution. Here we introduce three-dimensional multifrequency MRE of the brain combined with a novel reconstruction algorithm based on a model-free multifrequency inversion for calculating spatially resolved viscoelastic parameter maps of the human brain corresponding to the dynamic range of shear oscillations between 30 and 60 Hz. Maps of two viscoelastic parameters, the magnitude and the phase angle of the complex shear modulus, |G*| and φ, were obtained and normalized to group templates of 23 healthy volunteers in the age range of 22 to 72 years. This atlas of the anatomy of brain mechanics reveals a significant contrast in the stiffness parameter |G*| between different anatomical regions such as white matter (WM; 1.252±0.260 kPa), the corpus callosum genu (CCG; 1.104±0.280 kPa), the thalamus (TH; 1.058±0.208 kPa) and the head of the caudate nucleus (HCN; 0.649±0.101 kPa). φ, which is sensitive to the lossy behavior of the tissue, was in the order of CCG (1.011±0.172), TH (1.037±0.173), CN (0.906±0.257) and WM (0.854±0.169). The proposed method provides the first normalized maps of brain viscoelasticity with anatomical details in subcortical regions and provides useful background data for clinical applications of cerebral MRE.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Técnicas de Imagem por Elasticidade/métodos , Adulto , Idoso , Feminino , Voluntários Saudáveis , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA