Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(1): 63-79.e21, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608659

RESUMO

Metabolism is deeply intertwined with aging. Effects of metabolic interventions on aging have been explained with intracellular metabolism, growth control, and signaling. Studying chronological aging in yeast, we reveal a so far overlooked metabolic property that influences aging via the exchange of metabolites. We observed that metabolites exported by young cells are re-imported by chronologically aging cells, resulting in cross-generational metabolic interactions. Then, we used self-establishing metabolically cooperating communities (SeMeCo) as a tool to increase metabolite exchange and observed significant lifespan extensions. The longevity of the SeMeCo was attributable to metabolic reconfigurations in methionine consumer cells. These obtained a more glycolytic metabolism and increased the export of protective metabolites that in turn extended the lifespan of cells that supplied them with methionine. Our results establish metabolite exchange interactions as a determinant of cellular aging and show that metabolically cooperating cells can shape the metabolic environment to extend their lifespan.


Assuntos
Longevidade , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Metionina/metabolismo , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 121(11): e2313354121, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38457520

RESUMO

Cellular metabolism evolves through changes in the structure and quantitative states of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states by focusing on the collection of metabolite levels, the metabolome, which captures key aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites in 27 populations of nine budding yeast species, providing a graduated view of metabolic variation across multiple evolutionary time scales. Metabolite levels evolve more rapidly and independently of changes in the metabolic network's structure, providing complementary information to enzyme repertoire. Although metabolome variation accumulates mainly gradually over time, it is profoundly affected by domestication. We found pervasive signatures of convergent evolution in the metabolomes of independently domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences between wild and domesticated populations affect a substantial part of the metabolome, including rewiring of the TCA cycle and several amino acids that influence aroma production, likely reflecting adaptation to human niches. Overall, our work reveals previously unrecognized diversity in central metabolism and the pervasive influence of human-driven selection on metabolite levels in yeasts.


Assuntos
Domesticação , Saccharomycetales , Humanos , Filogenia , Saccharomycetales/genética , Metaboloma , Saccharomyces cerevisiae/genética
3.
Proc Natl Acad Sci U S A ; 120(35): e2302147120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603743

RESUMO

Metabolite levels shape cellular physiology and disease susceptibility, yet the general principles governing metabolome evolution are largely unknown. Here, we introduce a measure of conservation of individual metabolite levels among related species. By analyzing multispecies tissue metabolome datasets in phylogenetically diverse mammals and fruit flies, we show that conservation varies extensively across metabolites. Three major functional properties, metabolite abundance, essentiality, and association with human diseases predict conservation, highlighting a striking parallel between the evolutionary forces driving metabolome and protein sequence conservation. Metabolic network simulations recapitulated these general patterns and revealed that abundant metabolites are highly conserved due to their strong coupling to key metabolic fluxes in the network. Finally, we show that biomarkers of metabolic diseases can be distinguished from other metabolites simply based on evolutionary conservation, without requiring any prior clinical knowledge. Overall, this study uncovers simple rules that govern metabolic evolution in animals and implies that most tissue metabolome differences between species are permitted, rather than favored by natural selection. More broadly, our work paves the way toward using evolutionary information to identify biomarkers, as well as to detect pathogenic metabolome alterations in individual patients.


Assuntos
Drosophila , Metaboloma , Animais , Humanos , Sequência de Aminoácidos , Conhecimento , Mamíferos
4.
RNA ; 29(10): 1557-1574, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37460154

RESUMO

Assemblysomes are EDTA- and RNase-resistant ribonucleoprotein (RNP) complexes of paused ribosomes with protruding nascent polypeptide chains. They have been described in yeast and human cells for the proteasome subunit Rpt1, and the disordered amino-terminal part of the nascent chain was found to be indispensable for the accumulation of the Rpt1-RNP into assemblysomes. Motivated by this, to find other assemblysome-associated RNPs we used bioinformatics to rank subunits of Saccharomyces cerevisiae protein complexes according to their amino-terminal disorder propensity. The results revealed that gene products involved in DNA repair are enriched among the top candidates. The Sgs1 DNA helicase was chosen for experimental validation. We found that indeed nascent chains of Sgs1 form EDTA-resistant RNP condensates, assemblysomes by definition. Moreover, upon exposure to UV, SGS1 mRNA shifted from assemblysomes to polysomes, suggesting that external stimuli are regulators of assemblysome dynamics. We extended our studies to human cell lines. The BLM helicase, ortholog of yeast Sgs1, was identified upon sequencing assemblysome-associated RNAs from the MCF7 human breast cancer cell line, and mRNAs encoding DNA repair proteins were overall enriched. Using the radiation-resistant A549 cell line, we observed by transmission electron microscopy that 1,6-hexanediol, an agent known to disrupt phase-separated condensates, depletes ring ribosome structures compatible with assemblysomes from the cytoplasm of cells and makes the cells more sensitive to X-ray treatment. Taken together, these findings suggest that assemblysomes may be a component of the DNA damage response from yeast to human.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , RecQ Helicases/genética , Ácido Edético/metabolismo , Dano ao DNA , RNA/metabolismo , Ribonucleoproteínas/genética , Ribossomos/genética , Ribossomos/metabolismo
5.
Mol Biol Evol ; 40(2)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36718533

RESUMO

Bacterial evolution of antibiotic resistance frequently has deleterious side effects on microbial growth, virulence, and susceptibility to other antimicrobial agents. However, it is unclear how these trade-offs could be utilized for manipulating antibiotic resistance in the clinic, not least because the underlying molecular mechanisms are poorly understood. Using laboratory evolution, we demonstrate that clinically relevant resistance mutations in Escherichia coli constitutively rewire a large fraction of the transcriptome in a repeatable and stereotypic manner. Strikingly, lineages adapted to functionally distinct antibiotics and having no resistance mutations in common show a wide range of parallel gene expression changes that alter oxidative stress response, iron homeostasis, and the composition of the bacterial outer membrane and cell surface. These common physiological alterations are associated with changes in cell morphology and enhanced sensitivity to antimicrobial peptides. Finally, the constitutive transcriptomic changes induced by resistance mutations are largely distinct from those induced by antibiotic stresses in the wild type. This indicates a limited role for genetic assimilation of the induced antibiotic stress response during resistance evolution. Our work suggests that diverse resistance mutations converge on similar global transcriptomic states that shape genetic susceptibility to antimicrobial compounds.


Assuntos
Antibacterianos , Transcriptoma , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/genética , Farmacorresistência Bacteriana/genética
6.
Bioinformatics ; 38(11): 3070-3077, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35441658

RESUMO

MOTIVATION: Bioproduction of value-added compounds is frequently achieved by utilizing enzymes from other species. However, expression of such heterologous enzymes can be detrimental due to unexpected interactions within the host cell. Recently, an alternative strategy emerged, which relies on recruiting side activities of host enzymes to establish new biosynthetic pathways. Although such low-level 'underground' enzyme activities are prevalent, it remains poorly explored whether they may serve as an important reservoir for pathway engineering. RESULTS: Here, we use genome-scale modeling to estimate the theoretical potential of underground reactions for engineering novel biosynthetic pathways in Escherichia coli. We found that biochemical reactions contributed by underground enzyme activities often enhance the in silico production of compounds with industrial importance, including several cases where underground activities are indispensable for production. Most of these new capabilities can be achieved by the addition of one or two underground reactions to the native network, suggesting that only a few side activities need to be enhanced during implementation. Remarkably, we find that the contribution of underground reactions to the production of value-added compounds is comparable to that of heterologous reactions, underscoring their biotechnological potential. Taken together, our genome-wide study demonstrates that exploiting underground enzyme activities could be a promising addition to the toolbox of industrial strain development. AVAILABILITY AND IMPLEMENTATION: The data and scripts underlying this article are available on GitHub at https://github.com/pappb/Kovacs-et-al-Underground-metabolism. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Redes e Vias Metabólicas , Escherichia coli/genética , Escherichia coli/metabolismo , Vias Biossintéticas , Engenharia Metabólica
7.
Mol Biol Evol ; 38(3): 1137-1150, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33306797

RESUMO

The fitness impact of loss-of-function mutations is generally assumed to reflect the loss of specific molecular functions associated with the perturbed gene. Here, we propose that rewiring of the transcriptome upon deleterious gene inactivation is frequently nonspecific and mimics stereotypic responses to external environmental change. Consequently, transcriptional response to gene deletion could be suboptimal and incur an extra fitness cost. Analysis of the transcriptomes of ∼1,500 single-gene deletion Saccharomyces cerevisiae strains supported this scenario. First, most transcriptomic changes are not specific to the deleted gene but are rather triggered by perturbations in functionally diverse genes. Second, gene deletions that alter the expression of dosage-sensitive genes are especially harmful. Third, by elevating the expression level of downregulated genes, we could experimentally mitigate the fitness defect of gene deletions. Our work shows that rewiring of genomic expression upon gene inactivation shapes the harmful effects of mutations.


Assuntos
Regulação Fúngica da Expressão Gênica , Mutação com Perda de Função , Deleção de Genes , Saccharomyces cerevisiae , Transcriptoma
8.
PLoS Biol ; 17(1): e3000131, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703088

RESUMO

Central players of the adaptive immune system are the groups of proteins encoded in the major histocompatibility complex (MHC), which shape the immune response against pathogens and tolerance to self-peptides. The corresponding genomic region is of particular interest, as it harbors more disease associations than any other region in the human genome, including associations with infectious diseases, autoimmune disorders, cancers, and neuropsychiatric diseases. Certain MHC molecules can bind to a much wider range of epitopes than others, but the functional implication of such an elevated epitope-binding repertoire has remained largely unclear. It has been suggested that by recognizing more peptide segments, such promiscuous MHC molecules promote immune response against a broader range of pathogens. If so, the geographical distribution of MHC promiscuity level should be shaped by pathogen diversity. Three lines of evidence support the hypothesis. First, we found that in pathogen-rich geographical regions, humans are more likely to carry highly promiscuous MHC class II DRB1 alleles. Second, the switch between specialist and generalist antigen presentation has occurred repeatedly and in a rapid manner during human evolution. Third, molecular positions that define promiscuity level of MHC class II molecules are especially diverse and are under positive selection in human populations. Taken together, our work indicates that pathogen load maintains generalist adaptive immune recognition, with implications for medical genetics and epidemiology.


Assuntos
Imunidade Adaptativa/genética , Antígenos de Histocompatibilidade Classe II/genética , Complexo Principal de Histocompatibilidade/genética , Sequência de Aminoácidos/genética , Animais , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Evolução Biológica , Patógenos Transmitidos pelo Sangue , Epitopos/genética , Epitopos/fisiologia , Evolução Molecular , Variação Genética/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Complexo Principal de Histocompatibilidade/fisiologia , Peptídeos/genética , Seleção Genética/genética
9.
Mol Biol Evol ; 37(8): 2228-2240, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32191325

RESUMO

Convergent evolution is pervasive in nature, but it is poorly understood how various constraints and natural selection limit the diversity of evolvable phenotypes. Here, we analyze the transcriptome across fruiting body development to understand the independent evolution of complex multicellularity in the two largest clades of fungi-the Agarico- and Pezizomycotina. Despite >650 My of divergence between these clades, we find that very similar sets of genes have convergently been co-opted for complex multicellularity, followed by expansions of their gene families by duplications. Over 82% of shared multicellularity-related gene families were expanding in both clades, indicating a high prevalence of convergence also at the gene family level. This convergence is coupled with a rich inferred repertoire of multicellularity-related genes in the most recent common ancestor of the Agarico- and Pezizomycotina, consistent with the hypothesis that the coding capacity of ancestral fungal genomes might have promoted the repeated evolution of complex multicellularity. We interpret this repertoire as an indication of evolutionary predisposition of fungal ancestors for evolving complex multicellular fruiting bodies. Our work suggests that evolutionary convergence may happen not only when organisms are closely related or are under similar selection pressures, but also when ancestral genomic repertoires render certain evolutionary trajectories more likely than others, even across large phylogenetic distances.


Assuntos
Ascomicetos/genética , Basidiomycota/genética , Evolução Biológica , Carpóforos/genética , Regulação da Expressão Gênica no Desenvolvimento , Família Multigênica
11.
Proc Natl Acad Sci U S A ; 115(25): E5726-E5735, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29871954

RESUMO

Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology.


Assuntos
Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Loci Gênicos/genética , Genoma Bacteriano/genética , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Evolução Molecular , Genômica/métodos , Mutação/genética , Taxa de Mutação , Trimetoprima/farmacologia
12.
Mol Biol Evol ; 36(8): 1601-1611, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058961

RESUMO

Multidrug-resistant clinical isolates are common in certain pathogens, but rare in others. This pattern may be due to the fact that mutations shaping resistance have species-specific effects. To investigate this issue, we transferred a range of resistance-conferring mutations and a full resistance gene into Escherichia coli and closely related bacteria. We found that resistance mutations in one bacterial species frequently provide no resistance, in fact even yielding drug hypersensitivity in close relatives. In depth analysis of a key gene involved in aminoglycoside resistance (trkH) indicated that preexisting mutations in other genes-intergenic epistasis-underlie such extreme differences in mutational effects between species. Finally, reconstruction of adaptive landscapes under multiple antibiotic stresses revealed that mutations frequently provide multidrug resistance or elevated drug susceptibility (i.e., collateral sensitivity) only with certain combinations of other resistance mutations. We conclude that resistance and collateral sensitivity are contingent upon the genetic makeup of the bacterial population, and such contingency could shape the long-term fate of resistant bacteria. These results underlie the importance of species-specific treatment strategies.


Assuntos
Evolução Biológica , Farmacorresistência Bacteriana/genética , Transportadores de Cassetes de Ligação de ATP/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Aptidão Genética , Mutação , Canais de Potássio/genética , Salmonella enterica , Especificidade da Espécie
13.
Mol Syst Biol ; 15(4): e8462, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962359

RESUMO

Evidence suggests that novel enzyme functions evolved from low-level promiscuous activities in ancestral enzymes. Yet, the evolutionary dynamics and physiological mechanisms of how such side activities contribute to systems-level adaptations are not well characterized. Furthermore, it remains untested whether knowledge of an organism's promiscuous reaction set, or underground metabolism, can aid in forecasting the genetic basis of metabolic adaptations. Here, we employ a computational model of underground metabolism and laboratory evolution experiments to examine the role of enzyme promiscuity in the acquisition and optimization of growth on predicted non-native substrates in Escherichia coli K-12 MG1655. After as few as approximately 20 generations, evolved populations repeatedly acquired the capacity to grow on five predicted non-native substrates-D-lyxose, D-2-deoxyribose, D-arabinose, m-tartrate, and monomethyl succinate. Altered promiscuous activities were shown to be directly involved in establishing high-efficiency pathways. Structural mutations shifted enzyme substrate turnover rates toward the new substrate while retaining a preference for the primary substrate. Finally, genes underlying the phenotypic innovations were accurately predicted by genome-scale model simulations of metabolism with enzyme promiscuity.


Assuntos
Enzimas/química , Enzimas/metabolismo , Escherichia coli K12/crescimento & desenvolvimento , Mutação , Adaptação Fisiológica , Arabinose/metabolismo , Simulação por Computador , Desoxirribose/metabolismo , Enzimas/genética , Escherichia coli K12/enzimologia , Escherichia coli K12/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Evolução Molecular , Especificidade por Substrato , Succinatos/metabolismo , Tartaratos/metabolismo
14.
PLoS Biol ; 15(5): e2000644, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28486496

RESUMO

Genetically identical cells frequently display substantial heterogeneity in gene expression, cellular morphology and physiology. It has been suggested that by rapidly generating a subpopulation with novel phenotypic traits, phenotypic heterogeneity (or plasticity) accelerates the rate of adaptive evolution in populations facing extreme environmental challenges. This issue is important as cell-to-cell phenotypic heterogeneity may initiate key steps in microbial evolution of drug resistance and cancer progression. Here, we study how stochastic transitions between cellular states influence evolutionary adaptation to a stressful environment in yeast Saccharomyces cerevisiae. We developed inducible synthetic gene circuits that generate varying degrees of expression stochasticity of an antifungal resistance gene. We initiated laboratory evolutionary experiments with genotypes carrying different versions of the genetic circuit by exposing the corresponding populations to gradually increasing antifungal stress. Phenotypic heterogeneity altered the evolutionary dynamics by transforming the adaptive landscape that relates genotype to fitness. Specifically, it enhanced the adaptive value of beneficial mutations through synergism between cell-to-cell variability and genetic variation. Our work demonstrates that phenotypic heterogeneity is an evolving trait when populations face a chronic selection pressure. It shapes evolutionary trajectories at the genomic level and facilitates evolutionary rescue from a deteriorating environmental stress.


Assuntos
Adaptação Biológica , Evolução Biológica , Farmacorresistência Fúngica/genética , Genes Fúngicos , Fenótipo , Mutação , Saccharomyces cerevisiae
16.
Nat Rev Genet ; 15(7): 504-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24866756

RESUMO

Genome engineering strategies--such as genome editing, reduction and shuffling, and de novo genome synthesis--enable the modification of specific genomic locations in a directed and combinatorial manner. These approaches offer an unprecedented opportunity to study central evolutionary issues in which natural genetic variation is limited or biased, which sheds light on the evolutionary forces driving complex and extremely slowly evolving traits; the selective constraints on genome architecture; and the reconstruction of ancestral states of cellular structures and networks.


Assuntos
Evolução Biológica , Evolução Molecular Direcionada/métodos , Escherichia coli/genética , Engenharia Genética/métodos , Genoma Bacteriano , Cromossomos Artificiais Bacterianos/química , Escherichia coli/química , Escherichia coli/metabolismo , Estudos de Associação Genética , Código Genético , Variação Genética , Genótipo , Mutagênese Sítio-Dirigida , Fenótipo
17.
PLoS Comput Biol ; 14(1): e1005914, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29293497

RESUMO

Epithelial-mesenchymal-transition promotes intra-tumoral heterogeneity, by enhancing tumor cell invasiveness and promoting drug resistance. We integrated transcriptomic data for two clonal subpopulations from a prostate cancer cell line (PC-3) into a genome-scale metabolic network model to explore their metabolic differences and potential vulnerabilities. In this dual cell model, PC-3/S cells express Epithelial-mesenchymal-transition markers and display high invasiveness and low metastatic potential, while PC-3/M cells present the opposite phenotype and higher proliferative rate. Model-driven analysis and experimental validations unveiled a marked metabolic reprogramming in long-chain fatty acids metabolism. While PC-3/M cells showed an enhanced entry of long-chain fatty acids into the mitochondria, PC-3/S cells used long-chain fatty acids as precursors of eicosanoid metabolism. We suggest that this metabolic reprogramming endows PC-3/M cells with augmented energy metabolism for fast proliferation and PC-3/S cells with increased eicosanoid production impacting angiogenesis, cell adhesion and invasion. PC-3/S metabolism also promotes the accumulation of docosahexaenoic acid, a long-chain fatty acid with antiproliferative effects. The potential therapeutic significance of our model was supported by a differential sensitivity of PC-3/M cells to etomoxir, an inhibitor of long-chain fatty acid transport to the mitochondria.


Assuntos
Ácidos Graxos/metabolismo , Neoplasias da Próstata/metabolismo , Ácido Araquidônico/metabolismo , Transporte Biológico Ativo/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Transição Epitelial-Mesenquimal , Compostos de Epóxi/farmacologia , Ácidos Graxos/química , Humanos , Masculino , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Modelos Biológicos , Invasividade Neoplásica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Transcriptoma
18.
Mol Biol Evol ; 34(2): 380-390, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28025271

RESUMO

Changes in gene expression can affect phenotypes and therefore both its level and stochastic variability are frequently under selection. It has recently been proposed that epistatic interactions influence gene expression evolution: gene pairs where simultaneous knockout is more deleterious than expected should evolve reduced expression noise to avoid concurrent low expression of both proteins. In apparent support, yeast genes with many epistatic partners have low expression variation both among isogenic individuals and between species. However, the specific predictions and basic assumptions of this verbal model remain untested. Using bioinformatics analysis, we first demonstrate that the model's predictions are unsupported by available large-scale data. Based on quantitative biochemical modeling, we then show that epistasis between expression reductions (epigenetic epistasis) is not expected to aggravate the fitness cost of stochastic expression, which is in sharp contrast to the verbal argument. This nonintuitive result can be readily explained by the typical diminishing return of fitness on gene activity and by the fact that expression noise not only decreases but also increases the abundance of proteins. Overall, we conclude that stochastic variation in epistatic partners is unlikely to drive noise minimization or constrain gene expression divergence on a genomic scale.


Assuntos
Regulação Fúngica da Expressão Gênica , Saccharomyces cerevisiae/genética , Evolução Biológica , Biologia Computacional/métodos , Epigênese Genética , Expressão Gênica , Redes Reguladoras de Genes , Genes Fúngicos , Modelos Genéticos , Mutação/genética
19.
Bioinformatics ; 33(1): 95-103, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27794560

RESUMO

MOTIVATION: Skeletal muscle dysfunction is a systemic effect in one-third of patients with chronic obstructive pulmonary disease (COPD), characterized by high reactive-oxygen-species (ROS) production and abnormal endurance training-induced adaptive changes. However, the role of ROS in COPD remains unclear, not least because of the lack of appropriate tools to study multifactorial diseases. RESULTS: We describe a discrete model-driven method combining mechanistic and probabilistic approaches to decipher the role of ROS on the activity state of skeletal muscle regulatory network, assessed before and after an 8-week endurance training program in COPD patients and healthy subjects. In COPD, our computational analysis indicates abnormal training-induced regulatory responses leading to defective tissue remodeling and abnormal energy metabolism. Moreover, we identified tnf, insr, inha and myc as key regulators of abnormal training-induced adaptations in COPD. The tnf-insr pair was identified as a promising target for therapeutic interventions. Our work sheds new light on skeletal muscle dysfunction in COPD, opening new avenues for cost-effective therapies. It overcomes limitations of previous computational approaches showing high potential for the study of other multi-factorial diseases such as diabetes or cancer. CONTACT: jroca@clinic.ub.es or martacascante@ub.eduSupplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Metabolismo Energético , Músculo Esquelético/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Biologia de Sistemas , Exercício Físico , Humanos , Músculo Esquelético/fisiopatologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia
20.
PLoS Comput Biol ; 13(4): e1005494, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28419089

RESUMO

Energy metabolism is central to cellular biology. Thus, genome-scale models of heterotrophic unicellular species must account appropriately for the utilization of external nutrients to synthesize energy metabolites such as ATP. However, metabolic models designed for flux-balance analysis (FBA) may contain thermodynamically impossible energy-generating cycles: without nutrient consumption, these models are still capable of charging energy metabolites (such as ADP→ATP or NADP+→NADPH). Here, we show that energy-generating cycles occur in over 85% of metabolic models without extensive manual curation, such as those contained in the ModelSEED and MetaNetX databases; in contrast, such cycles are rare in the manually curated models of the BiGG database. Energy generating cycles may represent model errors, e.g., erroneous assumptions on reaction reversibilities. Alternatively, part of the cycle may be thermodynamically feasible in one environment, while the remainder is thermodynamically feasible in another environment; as standard FBA does not account for thermodynamics, combining these into an FBA model allows erroneous energy generation. The presence of energy-generating cycles typically inflates maximal biomass production rates by 25%, and may lead to biases in evolutionary simulations. We present efficient computational methods (i) to identify energy generating cycles, using FBA, and (ii) to identify minimal sets of model changes that eliminate them, using a variant of the GlobalFit algorithm.


Assuntos
Biologia Computacional/métodos , Metabolismo Energético/genética , Genoma/genética , Análise do Fluxo Metabólico/métodos , Redes e Vias Metabólicas/genética , Projetos de Pesquisa/normas , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA