RESUMO
We probe charge photogeneration and subsequent recombination dynamics in neat regioregular poly(3-hexylthiophene) films over six decades in time by means of time-resolved photoluminescence spectroscopy. Exciton dissociation at 10 K occurs extrinsically at interfaces between molecularly ordered and disordered domains. Polaron pairs thus produced recombine by tunneling with distributed rates governed by the distribution of electron-hole radii. Quantum-chemical calculations suggest that hot-exciton dissociation at such interfaces results from a high charge-transfer character.
RESUMO
In this study, a generally applicable strategy is described to manipulate the optical properties of a wide range of polymer semiconductors in the solid state. Blending these materials with a non-conjugated, polar polymer matrix is found to be the processing key to a drastic change and red-shift of the absorption characteristics.