Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 37(3): 1152-1163, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33427477

RESUMO

Bio-inspired approaches represent potentially transformational methods to fabricate and activate non-natural materials for applications ranging from biomedical diagnostics to energy harvesting platforms. Recently, bio-based methods for the exfoliation of graphene in water have been developed, resulting in peptide-capped nanosheets; however, a clear understanding of the reaction system and peptide ligand structure remains unclear, limiting the advance of such approaches. Here the effects of reaction solution conditions and peptide ligand structure were systematically examined for graphene exfoliation, identifying key parameters to optimize material production. For this, the P1 peptide, identified with affinity for graphene, was exploited to drive exfoliation of bulk graphite to generate the final materials. The peptide was modified at both the N- and C-terminus with a 10-carbon chain fatty acid to explore the effects of a hydrophobic domain on the exfoliation process. The system was examined as a function of sonication time, pH, reagent concentration, and graphite source, where the final materials were fully characterized using a suite of approaches. Collectively, these results demonstrated that maximum graphene production was achieved using the parent P1 peptide after 12 h of sonication under basic conditions. While the exfoliation efficiency was slightly lower for the fatty acid modified peptides, the graphene produced using these biomolecules had fewer defects incorporated, potentially from the wrapping of the nanosheet edge by the aliphatic domain. Such results are important to provide key reaction designs to optimize the reproducibility of graphene exfoliation using biomimetic approaches.

2.
J Mater Chem B ; 10(31): 6018-6025, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894139

RESUMO

The non-destructive functionalisation of graphene in aqueous media is a critical process with the potential to enhance the versatility of the 2D nanosheet material as a technological enabler. This could also unlock strategies for a wider uptake of graphene in bio-related applications. Graphene functionalisation can be achieved using peptides that specifically recognise the carbon-based material, resulting in persistent non-covalent adsorption without damaging the nanosheet. Bio-conjugation of non-natural moieties with these peptides can incorporate multifunctionality, further extending the applicability of these interfaces. Here, bio-conjugates comprising a graphene-binding peptide with a fatty acid chain of varying length are investigated for their binding affinity and adsorbed structures at the aqueous graphene interface. Through an integration of quartz crystal microbalance and atomic force microscopy data with advanced sampling molecular simulations, variations in the binding of these bio-conjugates is determined. Conjugation at either terminus led to good interfacial contact, and for a given attachment point, the changes in the fatty acid length did not substantially disrupt the conformations of the adsorbed peptide domain. These findings provide a solid foundation for designing multi-functional bio-interfaces for sensing and healthcare.


Assuntos
Grafite , Adsorção , Ácidos Graxos , Grafite/química , Peptídeos/química , Técnicas de Microbalança de Cristal de Quartzo
3.
Chem Commun (Camb) ; 56(62): 8834-8837, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32632430

RESUMO

Nanosheet heterostructures offer emergent optical/electronic properties. These could be achieved using selective materials binding peptides, but lack of understanding of selectivity impedes advancement. Here we examine peptides with affinity for graphene or h-BN using quantitative experiments and molecular simulation to identify traits for design of 2D nanosheet selective peptides.


Assuntos
Compostos de Boro/química , Grafite/química , Oligopeptídeos/química , Adsorção , Sequência de Aminoácidos
4.
Nanoscale Adv ; 1(8): 2857-2865, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-36133622

RESUMO

Copper sulfide materials have diverse applications from cancer therapy to environmental remediation due to their narrow bandgap and easily tuned plasmon. The synthesis of these materials often involves toxic reagents and harsh conditions where biomimetic methods may provide opportunities to produce these structures under sustainable conditions. To explore this capability, simple amino acids were exploited as biological ligands for the ambient synthesis of CuS materials. Using an aqueous-based approach, CuS nanodisks were prepared using acid-containing amino acid molecules that stabilize the materials against bulk aggregation. These structures were fully characterized by UV-vis analysis, transmission electron microscopy, dynamic light scattering, atomic force microscopy, selected area electron diffraction, and X-ray diffraction, which confirmed the formation of CuS. The materials possessed a vibrant plasmon band in the near IR region and demonstrated enhanced photocatalytic reactivity for the advanced oxidation of organic dyes in water. These results demonstrate a room temperature synthetic route to optically important materials, which could have important application in catalysis, optics, nanomedicine, etc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA