Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(13): e113004, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37211994

RESUMO

Soil salinity impairs plant growth reducing crop productivity. Toxic accumulation of sodium ions is counteracted by the Salt Overly Sensitive (SOS) pathway for Na+ extrusion, comprising the Na+ transporter SOS1, the kinase SOS2, and SOS3 as one of several Calcineurin-B-like (CBL) Ca2 + sensors. Here, we report that the receptor-like kinase GSO1/SGN3 activates SOS2, independently of SOS3 binding, by physical interaction and phosphorylation at Thr16. Loss of GSO1 function renders plants salt sensitive and GSO1 is both sufficient and required for activating the SOS2-SOS1 module in yeast and in planta. Salt stress causes the accumulation of GSO1 in two specific and spatially defined areas of the root tip: in the endodermis section undergoing Casparian strip (CS) formation, where it reinforces the CIF-GSO1-SGN1 axis for CS barrier formation; and in the meristem, where it creates the GSO1-SOS2-SOS1 axis for Na+ detoxification. Thus, GSO1 simultaneously prevents Na+ both from diffusing into the vasculature, and from poisoning unprotected stem cells in the meristem. By protecting the meristem, receptor-like kinase-conferred activation of the SOS2-SOS1 module allows root growth to be maintained in adverse environments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Sódio/metabolismo , Nicho de Células-Tronco , Estresse Salino , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(9): e2320657121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38386704

RESUMO

To control net sodium (Na+) uptake, Arabidopsis plants utilize the plasma membrane (PM) Na+/H+ antiporter SOS1 to achieve Na+ efflux at the root and Na+ loading into the xylem, and the channel-like HKT1;1 protein that mediates the reverse flux of Na+ unloading off the xylem. Together, these opposing transport systems govern the partition of Na+ within the plant yet they must be finely co-regulated to prevent a futile cycle of xylem loading and unloading. Here, we show that the Arabidopsis SOS3 protein acts as the molecular switch governing these Na+ fluxes by favoring the recruitment of SOS1 to the PM and its subsequent activation by the SOS2/SOS3 kinase complex under salt stress, while commanding HKT1;1 protein degradation upon acute sodic stress. SOS3 achieves this role by direct and SOS2-independent binding to previously unrecognized functional domains of SOS1 and HKT1;1. These results indicate that roots first retain moderate amounts of salts to facilitate osmoregulation, yet when sodicity exceeds a set point, SOS3-dependent HKT1;1 degradation switches the balance toward Na+ export out of the root. Thus, SOS3 functionally links and co-regulates the two major Na+ transport systems operating in vascular plants controlling plant tolerance to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Transporte Proteico , Transporte Biológico , Proteólise , Osmorregulação , Trocadores de Sódio-Hidrogênio/genética , Proteínas de Arabidopsis/genética
3.
Plant Cell ; 35(1): 298-317, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36135824

RESUMO

The precise timing of flowering in adverse environments is critical for plants to secure reproductive success. We report a mechanism in Arabidopsis (Arabidopsis thaliana) controlling the time of flowering by which the S-acylation-dependent nuclear import of the protein SALT OVERLY SENSITIVE3/CALCINEURIN B-LIKE4 (SOS3/CBL4), a Ca2+-signaling intermediary in the plant response to salinity, results in the selective stabilization of the flowering time regulator GIGANTEA inside the nucleus under salt stress, while degradation of GIGANTEA in the cytosol releases the protein kinase SOS2 to achieve salt tolerance. S-acylation of SOS3 was critical for its nuclear localization and the promotion of flowering, but partly dispensable for salt tolerance. SOS3 interacted with the photoperiodic flowering components GIGANTEA and FLAVIN-BINDING, KELCH REPEAT, F-BOX1 and participated in the transcriptional complex that regulates CONSTANS to sustain the transcription of CO and FLOWERING LOCUS T under salinity. Thus, the SOS3 protein acts as a Ca2+- and S-acylation-dependent versatile regulator that fine-tunes flowering time in a saline environment through the shared spatial separation and selective stabilization of GIGANTEA, thereby connecting two signaling networks to co-regulate the stress response and the time of flowering.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Calcineurina/metabolismo , Cálcio/metabolismo , Estresse Salino , Regulação da Expressão Gênica de Plantas , Flores/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(33): e2207275119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35939685

RESUMO

The circadian clock is a timekeeping, homeostatic system that temporally coordinates all major cellular processes. The function of the circadian clock is compensated in the face of variable environmental conditions ranging from normal to stress-inducing conditions. Salinity is a critical environmental factor affecting plant growth, and plants have evolved the SALT OVERLY SENSITIVE (SOS) pathway to acquire halotolerance. However, the regulatory systems for clock compensation under salinity are unclear. Here, we show that the plasma membrane Na+/H+ antiporter SOS1 specifically functions as a salt-specific circadian clock regulator via GIGANTEA (GI) in Arabidopsis thaliana. SOS1 directly interacts with GI in a salt-dependent manner and stabilizes this protein to sustain a proper clock period under salinity conditions. SOS1 function in circadian clock regulation requires the salt-mediated secondary messengers cytosolic free calcium and reactive oxygen species, pointing to a distinct regulatory role for SOS1 in addition to its function as a transporter to maintain Na+ homeostasis. Our results demonstrate that SOS1 maintains homeostasis of the salt response under high or daily fluctuating salt levels. These findings highlight the genetic capacity of the circadian clock to maintain timekeeping activity over a broad range of salinity levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ritmo Circadiano , Estresse Salino , Trocadores de Sódio-Hidrogênio , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estabilidade Proteica , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo
5.
J Exp Bot ; 75(8): 2481-2493, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38280208

RESUMO

The plant hormone abscisic acid (ABA) is an important regulator of plant growth and development and plays a crucial role in both biotic and abiotic stress responses. ABA modulates flowering time, but the precise molecular mechanism remains poorly understood. Here we report that ABA INSENSITIVE 2 (ABI2) is the only phosphatase from the ABA-signaling core that positively regulates the transition to flowering in Arabidopsis. Loss-of-function abi2-2 mutant shows significantly delayed flowering both under long day and short day conditions. Expression of floral repressor genes such as FLOWERING LOCUS C (FLC) and CYCLING DOF FACTOR 1 (CDF1) was significantly up-regulated in abi2-2 plants while expression of the flowering promoting genes FLOWERING LOCUS T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) was down-regulated. Through genetic interactions we further found that ost1-3 and abi5-1 mutations are epistatic to abi2-2, as both of them individually rescued the late flowering phenotype of abi2-2. Interestingly, phosphorylation and protein stability of ABA INSENSITIVE 5 (ABI5) were enhanced in abi2-2 plants suggesting that ABI2 dephosphorylates ABI5, thereby reducing protein stability and the capacity to induce FLC expression. Our findings uncovered the unexpected role of ABI2 in promoting flowering by inhibiting ABI5-mediated FLC expression in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Regulação da Expressão Gênica de Plantas , Fosforilação , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(48): 30805-30815, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199617

RESUMO

Transcriptional regulation is a complex and pivotal process in living cells. HOS15 is a transcriptional corepressor. Although transcriptional repressors generally have been associated with inactive genes, increasing evidence indicates that, through poorly understood mechanisms, transcriptional corepressors also associate with actively transcribed genes. Here, we show that HOS15 is the substrate receptor for an SCF/CUL1 E3 ubiquitin ligase complex (SCFHOS15) that negatively regulates plant immunity by destabilizing transcriptional activation complexes containing NPR1 and associated transcriptional activators. In unchallenged conditions, HOS15 continuously eliminates NPR1 to prevent inappropriate defense gene expression. Upon defense activation, HOS15 preferentially associates with phosphorylated NPR1 to stimulate rapid degradation of transcriptionally active NPR1 and thus limit the extent of defense gene expression. Our findings indicate that HOS15-mediated ubiquitination and elimination of NPR1 produce effects contrary to those of CUL3-containing ubiquitin ligase that coactivate defense gene expression. Thus, HOS15 plays a key role in the dynamic regulation of pre- and postactivation host defense.


Assuntos
Proteínas Correpressoras/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade Vegetal , Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , Ativação Transcricional , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexos Multiproteicos , Ligação Proteica , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
Int J Mol Sci ; 24(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36834961

RESUMO

Plants have evolved elaborate mechanisms to sense, respond to and overcome the detrimental effects of high soil salinity. The role of calcium transients in salinity stress signaling is well established, but the physiological significance of concurrent salinity-induced changes in cytosolic pH remains largely undefined. Here, we analyzed the response of Arabidopsis roots expressing the genetically encoded ratiometric pH-sensor pHGFP fused to marker proteins for the recruitment of the sensor to the cytosolic side of the tonoplast (pHGFP-VTI11) and the plasma membrane (pHGFP-LTI6b). Salinity elicited a rapid alkalinization of cytosolic pH (pHcyt) in the meristematic and elongation zone of wild-type roots. The pH-shift near the plasma membrane preceded that at the tonoplast. In pH-maps transversal to the root axis, the epidermis and cortex had cells with a more alkaline pHcyt relative to cells in the stele in control conditions. Conversely, seedlings treated with 100 mM NaCl exhibited an increased pHcyt in cells of the vasculature relative to the external layers of the root, and this response occurred in both reporter lines. These pHcyt changes were substantially reduced in mutant roots lacking a functional SOS3/CBL4 protein, suggesting that the operation of the SOS pathway mediated the dynamics of pHcyt in response to salinity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Raízes de Plantas , Salinidade , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Cloreto de Sódio/farmacologia , Transdução de Sinais/fisiologia
8.
Plant Physiol ; 185(4): 1860-1874, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33595056

RESUMO

The high-affinity K+ transporter HAK5 from Arabidopsis (Arabidopsis thaliana) is essential for K+ acquisition and plant growth at low micromolar K+ concentrations. Despite its functional relevance in plant nutrition, information about functional domains of HAK5 is scarce. Its activity is enhanced by phosphorylation via the AtCIPK23/AtCBL1-9 complex. Based on the recently published three-dimensionalstructure of the bacterial ortholog KimA from Bacillus subtilis, we have modeled AtHAK5 and, by a mutational approach, identified residues G67, Y70, G71, D72, D201, and E312 as essential for transporter function. According to the structural model, residues D72, D201, and E312 may bind K+, whereas residues G67, Y70, and G71 may shape the selective filter for K+, which resembles that of K+shaker-like channels. In addition, we show that phosphorylation of residue S35 by AtCIPK23 is required for reaching maximal transport activity. Serial deletions of the AtHAK5 C-terminus disclosed the presence of an autoinhibitory domain located between residues 571 and 633 together with an AtCIPK23-dependent activation domain downstream of position 633. Presumably, autoinhibition of AtHAK5 is counteracted by phosphorylation of S35 by AtCIPK23. Our results provide a molecular model for K+ transport and describe CIPK-CBL-mediated regulation of plant HAK transporters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Transporte Biológico/genética , Transporte Biológico/fisiologia , Proteínas de Transporte de Cátions/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Antiportadores de Potássio-Hidrogênio/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Mutação
9.
New Phytol ; 229(5): 3026-3036, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33098586

RESUMO

We combined the patch-clamp technique with ratiometric fluorescence imaging using the proton-responsive dye BCECF as a luminal probe. Upon application of a steep cytosol-directed potassium ion (K+ ) gradient in Arabidopsis mesophyll vacuoles, a strong and reversible acidification of the vacuolar lumen was detected, whereas no associated electrical currents were observed, in agreement with electroneutral cation/H+ exchange. Our data show that this acidification was generated by NHX antiport activity, because: it did not distinguish between K+ and sodium (Na+ ) ions; it was sensitive to the NHX inhibitor benzamil; and it was completely absent in vacuoles from nhx1 nhx2 double knockout plants. Our data further show that NHX activity could be reversed, was voltage-independent and specifically impaired by the low-abundance signaling lipid PI(3,5)P2 , which may regulate salt accumulation in plants by acting as a common messenger to coordinately shut down secondary active carriers responsible for cation and anion uptake inside the vacuole. Finally, we developed a theory based on thermodynamics, which supports the data obtained by our novel experimental approach. This work, therefore, represents a proof-of-principle that can be applied to the study of proton-dependent exchangers from plants and animals, which are barely detectable using conventional techniques.


Assuntos
Antiporters , Arabidopsis/fisiologia , Potássio , Vacúolos , Concentração de Íons de Hidrogênio , Íons , Fosfatidilinositóis , Potássio/metabolismo , Prótons , Vacúolos/metabolismo
10.
Plant Physiol ; 182(4): 2143-2153, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32015077

RESUMO

Plant growth largely depends on the maintenance of adequate intracellular levels of potassium (K+). The families of 10 Calcineurin B-Like (CBL) calcium sensors and 26 CBL-Interacting Protein Kinases (CIPKs) of Arabidopsis (Arabidopsis thaliana) decode the calcium signals elicited by environmental inputs to regulate different ion channels and transporters involved in the control of K+ fluxes by phosphorylation-dependent and -independent events. However, the detailed molecular mechanisms governing target specificity require investigation. Here, we show that the physical interaction between CIPK23 and the noncanonical ankyrin domain in the cytosolic side of the inward-rectifier K+ channel AKT1 regulates kinase docking and channel activation. Point mutations on this domain specifically alter binding to CIPK23, enhancing or impairing the ability of CIPK23 to regulate channel activity. Our data demonstrate the relevance of this protein-protein interaction that contributes to the formation of a complex between CIPK23/CBL1 and AKT1 in the membrane for the proper regulation of K+ transport.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação ao Cálcio/genética , Mutação Puntual , Potássio/metabolismo , Canais de Potássio/genética , Proteínas Serina-Treonina Quinases/genética
11.
Plant Physiol ; 184(2): 1097-1111, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32732349

RESUMO

Cold stress is a major environmental stress that severely affects plant growth and crop productivity. Arabidopsis (Arabidopsis thaliana) HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE15 (HOS15) is a substrate receptor of the CULLIN4-based CLR4 ubiquitin E3 ligase complex, which epigenetically regulates cold tolerance by degrading HISTONE DEACETYLASE2C (HD2C) to switch from repressive to permissive chromatin structure in response to cold stress. In this study, we characterized a HOS15-binding protein, POWERDRESS (PWR), and analyzed its function in the cold stress response. PWR loss-of-function plants (pwr) showed lower expression of cold-regulated (COR) genes and sensitivity to freezing. PWR interacts with HD2C through HOS15, and cold-induced HD2C degradation by HOS15 is diminished in the pwr mutant. The association of HOS15 and HD2C to promoters of cold-responsive COR genes was dependent on PWR. Consistent with these observations, the high acetylation levels of histone H3 by cold-induced and HOS15-mediated HD2C degradation were significantly reduced in pwr under cold stress. PWR also interacts with C-repeat element-binding factor transcription factors to modulate their cold-induced binding to the promoter of COR genes. Collectively, our data signify that the PWR-HOS15-HD2C histone-modifying complex regulates the expression of COR genes and the freezing tolerance of plants.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Epigênese Genética , Histonas/genética , Histonas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , Mutação
12.
Plant Physiol ; 184(1): 443-458, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32690755

RESUMO

Drought is one of the most critical environmental stresses limiting plant growth and crop productivity. The synthesis and signaling of abscisic acid (ABA), a key phytohormone in the drought stress response, is under photoperiodic control. GIGANTEA (GI), a key regulator of photoperiod-dependent flowering and the circadian rhythm, is also involved in the signaling pathways for various abiotic stresses. In this study, we isolated ENHANCED EM LEVEL (EEL)/basic Leu zipper 12, a transcription factor involved in ABA signal responses, as a GI interactor in Arabidopsis (Arabidopsis thaliana). The diurnal expression of 9-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3), a rate-limiting ABA biosynthetic enzyme, was reduced in the eel, gi-1, and eel gi-1 mutants under normal growth conditions. Chromatin immunoprecipitation and electrophoretic mobility shift assays revealed that EEL and GI bind directly to the ABA-responsive element motif in the NCED3 promoter. Furthermore, the eel, gi-1, and eel gi-1 mutants were hypersensitive to drought stress due to uncontrolled water loss. The transcript of NCED3, endogenous ABA levels, and stomatal closure were all reduced in the eel, gi-1, and eel gi-1 mutants under drought stress. Our results suggest that the EEL-GI complex positively regulates diurnal ABA synthesis by affecting the expression of NCED3, and contributes to the drought tolerance of Arabidopsis.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Imunoprecipitação da Cromatina , Dioxigenases/genética , Dioxigenases/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica
13.
Physiol Plant ; 171(4): 546-558, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32652584

RESUMO

High salinity induces osmotic stress and often leads to sodium ion-specific toxicity, with inhibitory effects on physiological, biochemical and developmental pathways. To cope with increased Na+ in soil water, plants restrict influx, compartmentalize ions into vacuoles, export excess Na+ from the cell, and distribute ions between the aerial and root organs. In this review, we discuss our current understanding of how high-affinity K+ transporters (HKT) contribute to salinity tolerance, focusing on HKT1-like family members primarily involved in long-distance transport, and in the recent research in the model plant Arabidopsis and its halophytic counterparts of the Eutrema genus. Functional characterization of the salt overly sensitive (SOS) pathway and HKT1-type transporters in these species indicate that they utilize similar approaches to deal with salinity, regardless of their tolerance.


Assuntos
Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/genética , Arabidopsis/metabolismo , Íons , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Potássio/metabolismo , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Sódio/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(23): E5400-E5409, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784800

RESUMO

Switching from repressed to active status in chromatin regulation is part of the critical responses that plants deploy to survive in an ever-changing environment. We previously reported that HOS15, a WD40-repeat protein, is involved in histone deacetylation and cold tolerance in Arabidopsis However, it remained unknown how HOS15 regulates cold responsive genes to affect cold tolerance. Here, we show that HOS15 interacts with histone deacetylase 2C (HD2C) and both proteins together associate with the promoters of cold-responsive COR genes, COR15A and COR47 Cold induced HD2C degradation is mediated by the CULLIN4 (CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as a substrate receptor. Interference with the association of HD2C and the COR gene promoters by HOS15 correlates with increased acetylation levels of histone H3. HOS15 also interacts with CBF transcription factors to modulate cold-induced binding to the COR gene promoters. Our results here demonstrate that cold induces HOS15-mediated chromatin modifications by degrading HD2C. This switches the chromatin structure status and facilitates recruitment of CBFs to the COR gene promoters. This is an apparent requirement to acquire cold tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Cromatina/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Acetilação , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Cromossômicas não Histona/genética , Temperatura Baixa , Resposta ao Choque Frio/genética , Resposta ao Choque Frio/fisiologia , Epigênese Genética/genética , Epigenômica/métodos , Regulação da Expressão Gênica de Plantas/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas/genética , Processamento de Proteína Pós-Traducional , Fatores de Transcrição/metabolismo
15.
Plant Physiol ; 180(2): 1046-1065, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30992336

RESUMO

Rice (Oryza sativa) stands among the world's most important crop species. Rice is salt sensitive, and the undue accumulation of sodium ions (Na+) in shoots has the strongest negative correlation with rice productivity under long-term salinity. The plasma membrane Na+/H+ exchanger protein Salt Overly Sensitive 1 (SOS1) is the sole Na+ efflux transporter that has been genetically characterized to date. Here, the importance of SOS1-facilitated Na+ flux in the salt tolerance of rice was analyzed in a reverse-genetics approach. A sos1 loss-of-function mutant displayed exceptional salt sensitivity that was correlated with excessive Na+ intake and impaired Na+ loading into the xylem, thus indicating that SOS1 controls net root Na+ uptake and long-distance Na+ transport to shoots. The acute Na+ sensitivity of sos1 plants at low NaCl concentrations allowed analysis of the transcriptional response to sodicity stress without effects of the osmotic stress intrinsic to high-salinity treatments. In contrast with that in the wild type, sos1 mutant roots displayed preferential down-regulation of stress-related genes in response to salt treatment, despite the greater intensity of stress experienced by the mutant. These results suggest there is impaired stress detection or an inability to mount a comprehensive response to salinity in sos1 In summary, the plasma membrane Na+/H+ exchanger SOS1 plays a major role in the salt tolerance of rice by controlling Na+ homeostasis and possibly contributing to the sensing of sodicity stress.


Assuntos
Membrana Celular/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Tolerância ao Sal , Trocador 1 de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Minerais/metabolismo , Mutação/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Desenvolvimento Vegetal , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Trocador 1 de Sódio-Hidrogênio/genética , Transcriptoma/genética , Xilema/metabolismo
16.
Plant J ; 93(1): 107-118, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29094495

RESUMO

Sucrose non-fermenting 1-related protein kinases (SnRKs) are important for plant growth and stress responses. This family has three clades: SnRK1, SnRK2 and SnRK3. Although plant SnRKs are thought to be activated by upstream kinases, the overall mechanism remains obscure. Geminivirus Rep-Interacting Kinase (GRIK)1 and GRIK2 phosphorylate SnRK1s, which are involved in sugar/energy sensing, and the grik1-1 grik2-1 double mutant shows growth retardation under regular growth conditions. In this study, we established another Arabidopsis mutant line harbouring a different allele of gene GRIK1 (grik1-2 grik2-1) that grows similarly to the wild-type, enabling us to evaluate the function of GRIKs under stress conditions. In the grik1-2 grik2-1 double mutant, phosphorylation of SnRK1.1 was reduced, but not eliminated, suggesting that the grik1-2 mutation is a weak allele. In addition to high sensitivity to glucose, the grik1-2 grik2-1 mutant was sensitive to high salt, indicating that GRIKs are also involved in salinity signalling pathways. Salt Overly Sensitive (SOS)2, a member of the SnRK3 subfamily, is a critical mediator of the response to salinity. GRIK1 phosphorylated SOS2 in vitro, resulting in elevated kinase activity of SOS2. The salt tolerance of sos2 was restored to normal levels by wild-type SOS2, but not by a mutated form of SOS2 lacking the T168 residue phosphorylated by GRIK1. Activation of SOS2 by GRIK1 was also demonstrated in a reconstituted system in yeast. Our results indicate that GRIKs phosphorylate and activate SnRK1 and other members of the SnRK3 family, and that they play important roles in multiple signalling pathways in vivo.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Tolerância ao Sal
17.
Plant Physiol ; 178(4): 1657-1678, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30309966

RESUMO

KEA4, KEA5, and KEA6 are members of the Arabidopsis (Arabidopsis thaliana) K+ efflux antiporter (KEA) family that share high sequence similarity but whose function remains unknown. Here, we show their gene expression pattern, subcellular localization, and physiological function in Arabidopsis. KEA4, KEA5, and KEA6 had similar tissue expression patterns, and the three KEA proteins localized to the Golgi, the trans-Golgi network, and the prevacuolar compartment/multivesicular bodies, suggesting overlapping roles of these proteins in the endomembrane system. Phenotypic analyses of single, double, and triple mutants confirmed functional redundancy. The triple mutant kea4 kea5 kea6 had small rosettes, short seedlings, and was sensitive to low K+ availability and to the sodicity imposed by high salinity. Also, the kea4 kea5 kea6 mutant plants had a reduced luminal pH in the Golgi, trans-Golgi network, prevacuolar compartment, and vacuole, in accordance with the K/H exchange activity of KEA proteins. Genetic analysis indicated that KEA4, KEA5, and KEA6 as well as endosomal Na+/H+exchanger5 (NHX5) and NHX6 acted coordinately to facilitate endosomal pH homeostasis and salt tolerance. Neither cancelling nor overexpressing the vacuolar antiporters NHX1 and NHX2 in the kea4 kea5 kea6 mutant background altered the salt-sensitive phenotype. The NHX1 and NHX2 proteins in the kea4 kea5 kea6 mutant background could not suppress the acidity of the endomembrane system but brought the vacuolar pH close to wild-type values. Together, these data signify that KEA4, KEA5, and KEA6 are endosomal K+ transporters functioning in maintaining pH and ion homeostasis in the endomembrane network.


Assuntos
Antiporters/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Potássio/metabolismo , Antiporters/genética , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Compartimento Celular/fisiologia , Regulação da Expressão Gênica de Plantas , Complexo de Golgi/metabolismo , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Lítio/farmacologia , Plantas Geneticamente Modificadas , Potássio/farmacologia , Estresse Salino/genética , Vacúolos/genética , Vacúolos/metabolismo , Rede trans-Golgi/metabolismo
18.
Physiol Plant ; 163(1): 88-102, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29076168

RESUMO

Cation antiporters of the NHX family are widely regarded as determinants of salt tolerance due to their capacity to drive sodium (Na) and sequester it into vacuoles. Recent work shows, however, that NHX transporters are primarily involved in vacuolar potassium (K) storage. Over-expression of the K/H antiporter AtNHX1 in tomato increases K accumulation into vacuoles and plant sensitivity to K deprivation. Here we show that the appearance of early leaf symptoms of K deficiency was associated with higher concentration of polyamines. Transgenic roots exhibited a greater sensitivity than shoots to K deprivation with changes in the composition of the free amino acids pool, total sugars and organic acids. Concentrations of amides (glutamine), amino acids (arginine) and sugars significantly increased in root, together with a reduction in malate and succinate concentrations. The concentration of pyruvate and the activity of pyruvate kinase were greater in the transgenic roots before K withdrawal although both parameters were depressed by K deprivation and approached wild-type levels. In the longer term, the over-expression of the NHX1 antiporter affected root growth and biomass partitioning (shoot/root ratio). Greater ethylene release produced longer stem internodes and leaf curling in the transgenic line. Our data show that enhanced sequestration of K by the NHX antiporter in the vacuoles altered cellular K homeostasis and had deeper physiological consequences than expected. Early metabolic changes lead later on to profound morphological and physiological adjustments resulting eventually in the loss of nutrient use efficiency.


Assuntos
Antiportadores de Potássio-Hidrogênio/metabolismo , Potássio/metabolismo , Solanum lycopersicum/fisiologia , Homeostase , Solanum lycopersicum/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antiportadores de Potássio-Hidrogênio/genética , Tolerância ao Sal , Vacúolos/metabolismo
19.
Plant Physiol ; 171(3): 2112-26, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27208305

RESUMO

A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K(+) TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na(+) from the transpiration stream. However, TsHKT1;2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K(+) transporter in the presence of Na(+) in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1;2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T salsuginea and most other HKT1 sequences contain Asn (n) in this position. Wild-type TsHKT1;2 and altered AtHKT1 (AtHKT1(N-D)) complemented K(+)-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N) (-) (D) and TsHKT1;2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1 Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na(+) and K(+) based on the n/d variance in the pore region. This change also dictated inward-rectification for Na(+) transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.


Assuntos
Substituição de Aminoácidos , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Transporte de Cátions/genética , Tolerância ao Sal/fisiologia , Simportadores/genética , Animais , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Brassicaceae/genética , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cátions/metabolismo , Feminino , Modelos Moleculares , Oócitos , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Simportadores/química , Simportadores/metabolismo , Xenopus laevis
20.
Proc Natl Acad Sci U S A ; 111(42): E4532-41, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288725

RESUMO

Plant cells have developed specific protective molecular machinery against environmental stresses. The family of CBL-interacting protein kinases (CIPK) and their interacting activators, the calcium sensors calcineurin B-like (CBLs), work together to decode calcium signals elicited by stress situations. The molecular basis of biological activation of CIPKs relies on the calcium-dependent interaction of a self-inhibitory NAF motif with a particular CBL, the phosphorylation of the activation loop by upstream kinases, and the subsequent phosphorylation of the CBL by the CIPK. We present the crystal structures of the NAF-truncated and pseudophosphorylated kinase domains of CIPK23 and CIPK24/SOS2. In addition, we provide biochemical data showing that although CIPK23 is intrinsically inactive and requires an external stimulation, CIPK24/SOS2 displays basal activity. This data correlates well with the observed conformation of the respective activation loops: Although the loop of CIPK23 is folded into a well-ordered structure that blocks the active site access to substrates, the loop of CIPK24/SOS2 protrudes out of the active site and allows catalysis. These structures together with biochemical and biophysical data show that CIPK kinase activity necessarily requires the coordinated releases of the activation loop from the active site and of the NAF motif from the nucleotide-binding site. Taken all together, we postulate the basis for a conserved calcium-dependent NAF-mediated regulation of CIPKs and a variable regulation by upstream kinases.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/enzimologia , Homeostase , Proteínas Serina-Treonina Quinases/química , Estresse Fisiológico , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Clonagem Molecular , Proteínas Quinases Dependentes de AMP Cíclico/química , Deleção de Genes , Regulação da Expressão Gênica de Plantas , Concentração de Íons de Hidrogênio , Transporte de Íons , Lítio/química , Modelos Moleculares , Dados de Sequência Molecular , Família Multigênica , Mutagênese Sítio-Dirigida , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Homologia de Sequência de Aminoácidos , Sódio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA