Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Proteome Res ; 20(1): 858-866, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289385

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers. Dissecting the tumor cell proteome from that of the non-tumor cells in the PDAC tumor bulk is critical for tumorigenesis studies, biomarker discovery, and development of therapeutics. However, investigating the tumor cell proteome has proven evasive due to the tumor's extremely complex cellular composition. To circumvent this technical barrier, we have combined bioorthogonal noncanonical amino acid tagging (BONCAT) and data-independent acquisition mass spectrometry (DIA-MS) in an orthotopic PDAC model to specifically identify the tumor cell proteome in vivo. Utilizing the tumor cell-specific expression of a mutant tRNA synthetase transgene, this approach provides tumor cells with the exclusive ability to incorporate an azide-bearing methionine analogue into newly synthesized proteins. The azide-tagged tumor cell proteome is subsequently enriched and purified via a bioorthogonal reaction and then identified and quantified using DIA-MS. Applying this workflow to the orthotopic PDAC model, we have identified thousands of proteins expressed by the tumor cells. Furthermore, by comparing the tumor cell and tumor bulk proteomes, we showed that the approach can distinctly differentiate proteins produced by tumor cells from those of non-tumor cells within the tumor microenvironment. Our study, for the first time, reveals the tumor cell proteome of PDAC under physiological conditions, providing broad applications for tumorigenesis, therapeutics, and biomarker studies in various human cancers.


Assuntos
Aminoacil-tRNA Sintetases , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Aminoácidos , Azidas , Carcinoma Ductal Pancreático/genética , Humanos , Neoplasias Pancreáticas/genética , Proteoma/genética , Microambiente Tumoral
2.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541839

RESUMO

The 240-kb Salmonella phage SPN3US genome encodes 264 gene products, many of which are functionally uncharacterized. We have previously used mass spectrometry to define the proteomes of wild-type and mutant forms of the SPN3US virion. In this study, we sought to determine whether this technique was suitable for the characterization of the SPN3US proteome during liquid infection. Mass spectrometry of SPN3US-infected cells identified 232 SPN3US and 1,994 Salmonella proteins. SPN3US proteins with related functions, such as proteins with roles in DNA replication, transcription, and virion formation, were coordinately expressed in a temporal manner. Mass spectral counts showed the four most abundant SPN3US proteins to be the major capsid protein, two head ejection proteins, and the functionally unassigned protein gp22. This high abundance of gp22 in infected bacteria contrasted with its absence from mature virions, suggesting that it might be the scaffold protein, an essential head morphogenesis protein yet to be identified in giant phages. We identified homologs to SPN3US gp22 in 45 related giant phages, including ϕKZ, whose counterpart is also abundant in infected bacteria but absent in the virion. We determined the ϕKZ counterpart to be cleaved in vitro by its prohead protease, an event that has been observed to promote head maturation of some other phages. Our findings are consistent with a scaffold protein assignment for SPN3US gp22, although direct evidence is required for its confirmation. These studies demonstrate the power of mass spectral analyses for facilitating the acquisition of new knowledge into the molecular events of viral infection.IMPORTANCE "Giant" phages with genomes >200 kb are being isolated in increasing numbers from a range of environments. With hosts such as Salmonella enterica, Pseudomonas aeruginosa, and Erwinia amylovora, these phages are of interest for phage therapy of multidrug-resistant pathogens. However, our understanding of how these complex phages interact with their hosts is impeded by the proportion (∼80%) of their gene products that are functionally uncharacterized. To develop the repertoire of techniques for analysis of phages, we analyzed a liquid infection of Salmonella phage SPN3US (240-kb genome) using third-generation mass spectrometry. We observed the temporal production of phage proteins whose genes collectively represent 96% of the SPN3US genome. These findings demonstrate the sensitivity of mass spectrometry for global proteomic profiling of virus-infected cells, and the identification of a candidate for a major head morphogenesis protein will facilitate further studies into giant phage head assembly.


Assuntos
Vírus Gigantes/genética , Glicoproteínas/genética , Proteoma/análise , Fagos de Salmonella/genética , Salmonella typhimurium/virologia , Proteínas Virais/genética , DNA Viral/genética , Perfilação da Expressão Gênica , Genoma Viral/genética , Espectrometria de Massas , Pseudomonas aeruginosa/virologia
3.
Viruses ; 15(3)2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-36992431

RESUMO

Salmonella myovirus SPN3US has a T = 27 capsid composed of >50 different gene products, including many that are packaged along with the 240 kb genome and ejected into the host cell. Recently, we showed that an essential phage-encoded prohead protease gp245 is responsible for cleavage of proteins during SPN3US head assembly. This proteolytic maturation step induces major changes in precursor head particles, enabling them to expand and undergo genome packaging. To comprehensively define the composition of the mature SPN3US head and elucidate how it is modified by proteolysis during assembly, we conducted tandem mass spectrometry analysis of purified virions and tailless heads. Fourteen protease cleavage sites were identified in nine proteins, including eight sites not previously identified in head proteins in vivo. Among these was the maturation cleavage site of gp245 which was identical to the autocleavage site we had previously identified in purified recombinant gp245. Our findings underscore the value of employing multiple mass spectrometry-based experimental strategies as a way to enhance the detection of head protein cleavage sites in tailed phages. In addition, our results have identified a conserved set of head proteins in related giant phages that are similarly cleaved by their respective prohead proteases, suggesting that these proteins have important roles in governing the formation and function of large icosahedral capsids.


Assuntos
Capsídeo , Peptídeo Hidrolases , Capsídeo/metabolismo , Proteólise , Peptídeo Hidrolases/metabolismo , Proteínas do Capsídeo/química , Salmonella , Endopeptidases/genética , Endopeptidases/metabolismo
4.
Front Cell Dev Biol ; 9: 704781, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34595166

RESUMO

The placental villus syncytiotrophoblast, the nutrient-transporting and hormone-producing epithelium of the human placenta, is a critical regulator of fetal development and maternal physiology. However, the identities of the proteins synthesized and secreted by primary human trophoblast (PHT) cells remain unknown. Stable Isotope Labeling with Amino Acids in Cell Culture followed by mass spectrometry analysis of the conditioned media was used to identify secreted proteins and obtain information about their relative rates of synthesis in syncytialized multinucleated PHT cells isolated from normal term placental villus tissue (n = 4/independent placenta). A total of 1,344 proteins were identified, most of which have not previously been reported to be secreted by the human placenta or trophoblast. The majority of secreted proteins are involved in energy and carbon metabolism, glycolysis, biosynthesis of amino acids, purine metabolism, and fatty acid degradation. Histone family proteins and mitochondrial proteins were among proteins with the slowest synthesis rate whereas proteins associated with signaling and the plasma membrane were synthesized rapidly. There was a significant overlap between the PHT secretome and proteins known be secreted to the fetal circulation by the human placenta in vivo. The generated data will guide future experiments to determine the function of individual secreted proteins and will help us better understand how the placenta controls maternal and fetal physiology.

5.
Cell Rep ; 24(4): 815-823, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30044979

RESUMO

SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of non-cycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site. Mutations C341S and C522S abolish the ability of SAMHD1 to restrict HIV replication, whereas the C350S mutant remains restriction competent. The C522S mutation makes the protein resistant to inhibition by hydrogen peroxide but has no effect on the tetramerization-dependent dNTPase activity of SAMHD1 in vitro or on the ability of SAMHD1 to deplete cellular dNTPs. Our results reveal that enzymatic activation of SAMHD1 via nucleotide-dependent tetramerization is not sufficient for the establishment of the antiviral state and that retroviral restriction depends on the ability of the protein to undergo redox transformations.


Assuntos
Cisteína/metabolismo , Retroviridae/fisiologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Replicação Viral/fisiologia , Cisteína/genética , Células HEK293 , Humanos , Mutação , Oxirredução , Proteína 1 com Domínio SAM e Domínio HD/genética , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA