Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34117120

RESUMO

Hypertrophic cardiomyopathy (HCM) is the most common inherited form of heart disease, associated with over 1,000 mutations, many in ß-cardiac myosin (MYH7). Molecular studies of myosin with different HCM mutations have revealed a diversity of effects on ATPase and load-sensitive rate of detachment from actin. It has been difficult to predict how such diverse molecular effects combine to influence forces at the cellular level and further influence cellular phenotypes. This study focused on the P710R mutation that dramatically decreased in vitro motility velocity and actin-activated ATPase, in contrast to other MYH7 mutations. Optical trap measurements of single myosin molecules revealed that this mutation reduced the step size of the myosin motor and the load sensitivity of the actin detachment rate. Conversely, this mutation destabilized the super relaxed state in longer, two-headed myosin constructs, freeing more heads to generate force. Micropatterned human induced pluripotent derived stem cell (hiPSC)-cardiomyocytes CRISPR-edited with the P710R mutation produced significantly increased force (measured by traction force microscopy) compared with isogenic control cells. The P710R mutation also caused cardiomyocyte hypertrophy and cytoskeletal remodeling as measured by immunostaining and electron microscopy. Cellular hypertrophy was prevented in the P710R cells by inhibition of ERK or Akt. Finally, we used a computational model that integrated the measured molecular changes to predict the measured traction forces. These results confirm a key role for regulation of the super relaxed state in driving hypercontractility in HCM with the P710R mutation and demonstrate the value of a multiscale approach in revealing key mechanisms of disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Contração Miocárdica/genética , Miosinas Ventriculares/genética , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Cálcio/metabolismo , Linhagem Celular , Tamanho Celular , Predisposição Genética para Doença , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismo
2.
J Micromech Microeng ; 29(11)2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32879557

RESUMO

Cryogenic electron tomography is the highest resolution tool available for structural analysis of macromolecular organization inside cells. Micropatterning of extracellular matrix (ECM) proteins is an established in vitro cell culture technique used to control cell shape. Recent traction force microscopy studies have shown correlation between cell morphology and the regulation of force transmission. However, it remains unknown how cells sustain increased strain energy states and localized stresses at the supramolecular level. Here, we report a technology to enable direct observation of mesoscale organization in epithelial cells under morphological modulation, using a maskless protein photopatterning method (PRIMO) to confine cells to ECM micropatterns on electron microscopy substrates. These micropatterned cell culture substrates can be used in mechanobiology research to correlate changes in nanometer-scale organization at cell-cell and cell-ECM contacts to strain energy states and traction stress distribution in the cell.

3.
Nat Commun ; 15(1): 5427, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926342

RESUMO

Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) are powerful in vitro models to study the mechanisms underlying cardiomyopathies and cardiotoxicity. Quantification of the contractile function in single hiPSC-CMs at high-throughput and over time is essential to disentangle how cellular mechanisms affect heart function. Here, we present CONTRAX, an open-access, versatile, and streamlined pipeline for quantitative tracking of the contractile dynamics of single hiPSC-CMs over time. Three software modules enable: parameter-based identification of single hiPSC-CMs; automated video acquisition of >200 cells/hour; and contractility measurements via traction force microscopy. We analyze >4,500 hiPSC-CMs over time in the same cells under orthogonal conditions of culture media and substrate stiffnesses; +/- drug treatment; +/- cardiac mutations. Using undirected clustering, we reveal converging maturation patterns, quantifiable drug response to Mavacamten and significant deficiencies in hiPSC-CMs with disease mutations. CONTRAX empowers researchers with a potent quantitative approach to develop cardiac therapies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Software , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Diferenciação Celular/efeitos dos fármacos , Análise de Célula Única/métodos , Células Cultivadas
4.
Nanotechnology ; 24(1): 015602, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23221022

RESUMO

Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al(2)O(3)) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al(2)O(3) layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 µm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al(2)O(3) using ALD.

5.
NPJ Regen Med ; 7(1): 19, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304486

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive genetic myopathy that leads to heart failure from dilated cardiomyopathy by early adulthood. Recent evidence suggests that tamoxifen, a selective estrogen receptor modulator widely used to treat breast cancer, ameliorates DMD cardiomyopathy. However, the mechanism of action of 4-hydroxytamoxifen, the active metabolite of tamoxifen, on cardiomyocyte function remains unclear. To examine the effects of chronic 4-hydroxytamoxifen treatment, we used state-of-the-art human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and a bioengineered platform to model DMD. We assessed the beating rate and beating velocity of iPSC-CMs in monolayers and as single cells on micropatterns that promote a physiological cardiomyocyte morphology. We found that 4-hydroxytamoxifen treatment of DMD iPSC-CMs decreased beating rate, increased beating velocity, and ameliorated calcium-handling deficits, leading to prolonged viability. Our study highlights the utility of a bioengineered iPSC-CM platform for drug testing and underscores the potential of repurposing tamoxifen as a therapy for DMD cardiomyopathy.

6.
Micromachines (Basel) ; 12(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34832798

RESUMO

Human-induced pluripotent stem cell-derived cardiomyocytes are a potentially unlimited cell source and promising patient-specific in vitro model of cardiac diseases. Yet, these cells are limited by immaturity and population heterogeneity. Current in vitro studies aiming at better understanding of the mechanical and chemical cues in the microenvironment that drive cellular maturation involve deformable materials and precise manipulation of the microenvironment with, for example, micropatterns. Such microenvironment manipulation most often involves microfabrication protocols which are time-consuming, require cleanroom facilities and photolithography expertise. Here, we present a method to increase the scale of the fabrication pipeline, thereby enabling large-batch generation of shelf-stable microenvironment protein templates on glass chips. This decreases fabrication time and allows for more flexibility in the subsequent steps, for example, in tuning the material properties and the selection of extracellular matrix or cell proteins. Further, the fabrication of deformable hydrogels has been optimized for compatibility with these templates, in addition to the templates being able to be used to acquire protein patterns directly on the glass chips. With our approach, we have successfully controlled the shapes of cardiomyocytes seeded on Matrigel-patterned hydrogels.

7.
Stem Cell Reports ; 16(9): 2169-2181, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34019816

RESUMO

Duchenne muscular dystrophy (DMD) is a rare X-linked recessive disease that is associated with severe progressive muscle degeneration culminating in death due to cardiorespiratory failure. We previously observed an unexpected proliferation-independent telomere shortening in cardiomyocytes of a DMD mouse model. Here, we provide mechanistic insights using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). Using traction force microscopy, we show that DMD hiPSC-CMs exhibit deficits in force generation on fibrotic-like bioengineered hydrogels, aberrant calcium handling, and increased reactive oxygen species levels. Furthermore, we observed a progressive post-mitotic telomere shortening in DMD hiPSC-CMs coincident with downregulation of shelterin complex, telomere capping proteins, and activation of the p53 DNA damage response. This telomere shortening is blocked by blebbistatin, which inhibits contraction in DMD cardiomyocytes. Our studies underscore the role of fibrotic stiffening in the etiology of DMD cardiomyopathy. In addition, our data indicate that telomere shortening is progressive, contraction dependent, and mechanosensitive, and suggest points of therapeutic intervention.


Assuntos
Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Contração Miocárdica/genética , Miócitos Cardíacos/metabolismo , Encurtamento do Telômero/genética , Biomarcadores , Cardiomiopatias/etiologia , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Diferenciação Celular , Células Cultivadas , Microambiente Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fibrose , Imunofluorescência , Expressão Gênica , Humanos , Imunofenotipagem , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fenômenos Mecânicos , Distrofias Musculares/patologia , Distrofia Muscular de Duchenne/etiologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Contração Miocárdica/efeitos dos fármacos
8.
Cell Mol Bioeng ; 13(1): 87-98, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32030110

RESUMO

INTRODUCTION: The orientation of collagen fibers in native tissues plays an important role in cell signaling and mediates the progression of tumor cells in breast cancer by a contact guidance mechanism. Understanding how migration of epithelial cells is directed by the alignment of collagen fibers requires in vitro assays with standardized orientations of collagen fibers. METHODS: To address this issue, we produced micro-stripes with aligned collagen fibers using an easy-to-use and versatile approach based on the aspiration of a collagen solution within a microchannel. Glass coverslips were functionalized with a (3-aminopropyl)triethoxysilane/glutaraldehyde linkage to covalently anchor micro-stripes of aligned collagen fibers, whereas microchannels were functionalized with a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) nonionic triblock polymer to prevent adhesion of the collagen micro-stripes. RESULTS: Using this strategy, microchannels can be peeled off to expose micro-stripes of aligned collagen fibers without affecting their mechanical integrity. We used time-lapse confocal reflection microscopy to characterize the polymerization kinetics of collagen networks for different concentrations and the orientation of collagen fibers as a function of the microchannel width. Our results indicate a non-linear concentration dependence of the area of fluorescence, suggesting that the architecture of collagen networks is sensitive to small changes in concentration. We show the possibility to influence the collagen fibril coverage by adjusting the concentration of the collagen solution. CONCLUSION: We applied this novel approach to study the migration of epithelial cells, demonstrating that collagen micro-stripes with aligned fibers represent a valuable in-vitro assay for studying cell contact guidance mechanisms.

9.
Prog Biophys Mol Biol ; 144: 3-15, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30579630

RESUMO

The study of human cardiomyopathies and the development and testing of new therapies has long been limited by the availability of appropriate in vitro model systems. Cardiomyocytes are highly specialized cells whose internal structure and contractile function are sensitive to the local microenvironment and the combination of mechanical and biochemical cues they receive. The complementary technologies of human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) and microphysiological systems (MPS) allow for precise control of the genetics and microenvironment of human cells in in vitro contexts. These combined systems also enable quantitative measurement of mechanical function and intracellular organization. This review describes relevant factors in the myocardium microenvironment that affect CM structure and mechanical function and demonstrates the application of several engineered microphysiological systems for studying development, disease, and drug discovery.


Assuntos
Engenharia Celular , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia , Animais , Microambiente Celular , Humanos
10.
Microsyst Nanoeng ; 5: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31231538

RESUMO

Patterning of micro- and nanoscale topologies and surface properties of polymer devices is of particular importance for a broad range of life science applications, including cell-adhesion assays and highly sensitive bioassays. The manufacturing of such devices necessitates cumbersome multiple-step fabrication procedures and results in surface properties which degrade over time. This critically hinders their wide-spread dissemination. Here, we simultaneously mold and surface energy pattern microstructures in off-stoichiometric thiol-ene by area-selective monomer self-assembly in a rapid micro-reaction injection molding cycle. We replicated arrays of 1,843,650 hydrophilic-in-hydrophobic femtolitre-wells with long-term stable surface properties and magnetically trapped beads with 75% and 87.2% efficiency in single- and multiple-seeding events, respectively. These results form the basis for ultrasensitive digital biosensors, specifically, and for the fabrication of medical devices and life science research tools, generally.

11.
Commun Biol ; 1: 199, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30480100

RESUMO

Although tissue engineering using human-induced pluripotent stem cells is a promising approach for treatment of cardiovascular diseases, some limiting factors include the survival, electrical integration, maturity, scalability, and immune response of three-dimensional (3D) engineered tissues. Here we discuss these important roadblocks facing the tissue engineering field and suggest potential approaches to overcome these challenges.

12.
PLoS One ; 12(3): e0174314, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28350811

RESUMO

Airborne transmission of the influenza virus contributes significantly to the spread of this infectious pathogen, particularly over large distances when carried by aerosol droplets with long survival times. Efficient sampling of virus-loaded aerosol in combination with a low limit of detection of the collected virus could enable rapid and early detection of airborne influenza virus at the point-of-care setting. Here, we demonstrate a successful sampling and detection of airborne influenza virus using a system specifically developed for such applications. Our system consists of a custom-made electrostatic precipitation (ESP)-based bioaerosol sampler that is coupled with downstream quantitative polymerase chain reaction (qPCR) analysis. Aerosolized viruses are sampled directly into a miniaturized collector with liquid volume of 150 µL, which constitutes a simple and direct interface with subsequent biological assays. This approach reduces sample dilution by at least one order of magnitude when compared to other liquid-based aerosol bio-samplers. Performance of our ESP-based sampler was evaluated using influenza virus-loaded sub-micron aerosols generated from both cultured and clinical samples. Despite the miniaturized collection volume, we demonstrate a collection efficiency of at least 10% and sensitive detection of a minimum of 3721 RNA copies. Furthermore, we show that an improved extraction protocol can allow viral recovery of down to 303 RNA copies and a maximum sampler collection efficiency of 47%. A device with such a performance would reduce sampling times dramatically, from a few hours with current sampling methods down to a couple of minutes with our ESP-based bioaerosol sampler.


Assuntos
Aerossóis/análise , Microbiologia do Ar , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Influenza Humana/virologia , Monitoramento Ambiental/instrumentação , Desenho de Equipamento , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , RNA Viral/isolamento & purificação
13.
ACS Appl Mater Interfaces ; 9(12): 10418-10426, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266828

RESUMO

Bead-based microwell array technology is growing as an ultrasensitive analysis tool as exemplified by the successful commercial applications from Illumina and Quanterix for nucleic acid analysis and ultrasensitive protein measurements, respectively. High-efficiency seeding of magnetic beads is key for these applications and is enhanced by hydrophilic-in-hydrophobic microwell arrays, which are unfortunately often expensive or labor-intensive to manufacture. Here, we demonstrate a new single-step manufacturing approach for imprinting cheap and disposable hydrophilic-in-hydrophobic microwell arrays suitable for digital bioassays. Imprinting of arrays with hydrophilic-in-hydrophobic microwells is made possible using an innovative surface energy replication approach by means of a hydrophobic thiol-ene polymer formulation. In this polymer, hydrophobic-moiety-containing monomers self-assemble at the hydrophobic surface of the imprinting stamp, which results in a hydrophobic replica surface after polymerization. After removing the stamp, microwells with hydrophobic walls and a hydrophilic bottom are obtained. We demonstrate that the hydrophilic-in-hydrophobic imprinted microwell arrays enable successful and efficient self-assembly of individual water droplets and seeding of magnetic beads with loading efficiencies up to 96%. We also demonstrate the suitability of the microwell arrays for the isolation and digital counting of single molecules achieving a limit of detection of 17.4 aM when performing a streptavidin-biotin binding assay as model system. Since this approach is up-scalable through reaction injection molding, we expect it will contribute substantially to the translation of ultrasensitive digital microwell array technology toward diagnostic applications.


Assuntos
Bioensaio , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Nanotecnologia , Estreptavidina
14.
Microsyst Nanoeng ; 2: 15043, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31057810

RESUMO

Thiol-enes are a group of alternating copolymers with highly ordered networks and are used in a wide range of applications. Here, "click" chemistry photostructuring in off-stoichiometric thiol-enes is shown to induce microscale polymeric compositional gradients due to species diffusion between non-illuminated and illuminated regions, creating two narrow zones with distinct compositions on either side of the photomask feature boundary: a densely cross-linked zone in the illuminated region and a zone with an unpolymerized highly off-stoichiometric monomer composition in the non-illuminated region. Using confocal Raman microscopy, it is here explained how species diffusion causes such intricate compositional gradients in the polymer and how off-stoichiometry results in improved image transfer accuracy in thiol-ene photostructuring. Furthermore, increasing the functional group off-stoichiometry and decreasing the photomask feature size is shown to amplify the induced gradients, which potentially leads to a new methodology for microstructuring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA