Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Science ; 281(5385): 2042-5, 1998 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-9748166

RESUMO

Phosphorylation sites in members of the protein kinase A (PKA), PKG, and PKC kinase subfamily are conserved. Thus, the PKB kinase PDK1 may be responsible for the phosphorylation of PKC isotypes. PDK1 phosphorylated the activation loop sites of PKCzeta and PKCdelta in vitro and in a phosphoinositide 3-kinase (PI 3-kinase)-dependent manner in vivo in human embryonic kidney (293) cells. All members of the PKC family tested formed complexes with PDK1. PDK1-dependent phosphorylation of PKCdelta in vitro was stimulated by combined PKC and PDK1 activators. The activation loop phosphorylation of PKCdelta in response to serum stimulation of cells was PI 3-kinase-dependent and was enhanced by PDK1 coexpression.


Assuntos
Isoenzimas/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Sítios de Ligação , Linhagem Celular , Cromonas/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Humanos , Morfolinas/farmacologia , Fosfatidilcolinas/farmacologia , Fosfatos de Fosfatidilinositol , Fosfatidilserinas/farmacologia , Fosforilação , Proteína Quinase C beta , Proteínas Recombinantes/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
2.
Curr Biol ; 9(10): 522-9, 1999 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-10339425

RESUMO

BACKGROUND: The protein kinase C (PKC) family has been implicated in the control of many cellular functions. Although PKC isotypes are characterized by their allosteric activation, phosphorylation also plays a key role in controlling activity. In classical PKC isotypes, one of the three critical sites is a carboxy-terminal hydrophobic site also conserved in other AGC kinase subfamily members. Although this site is crucial to the control of this class of enzymes, the upstream kinase(s) has not been identified. RESULTS: A membrane-associated kinase activity that phosphorylates the hydrophobic site in PKCalpha was detected. This activity was suppressed when cells were pretreated with the immunosuppresant drug rapamycin or the phosphoinositide (Pl) 3-kinase inhibitor LY294002. These pretreatments also blocked specifically the serum-induced phosphorylation of the hydrophobic site in PKCdelta in vivo. The most highly purified hydrophobic site kinase preparations ( approximately 10,000-fold) reacted with antibodies to PKCzeta/iota. Consistent with this, rapamycin and LY294002 reduced the recovery of PKCzeta from the membrane fraction of transfected cells. An activated mutant of PKCzeta, but not wild-type PKCzeta, induced phosphorylation of the PKCdelta hydrophobic site in a rapamycin-independent manner, whereas a kinase-dead PKCzeta mutant suppressed this serum-induced phosphorylation. The immunopurified, activated mutant of PKCzeta could phosphorylate the PKCdelta hydrophobic site in vitro, whereas wild-type PKCzeta could not. CONCLUSIONS: PKCzeta is identified as a component of the upstream kinase responsible for the phosphorylation of the PKCdelta hydrophobic site in vitro and in vivo. PKCzeta can therefore control the phosphorylation of this PKCdelta site, antagonizing a rapamycin-sensitive pathway.


Assuntos
Proteína Quinase C/metabolismo , Sirolimo/farmacologia , Animais , Sítios de Ligação , Linhagem Celular , Cromonas/farmacologia , Inibidores Enzimáticos/farmacologia , Humanos , Morfolinas/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação , Proteína Quinase C/química , Ratos , Serina/metabolismo , Especificidade por Substrato
3.
Ann Plast Surg ; 25(2): 152-3, 1990 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-2396824

RESUMO

A simple system for irrigating large wounds can be made for use in any operating theater or ward. This versatile system allows the surgeon to change the force, volume, and speed of different solutions with an economy of movement and a minimum of manipulation. The same bottles of solutions can be applied in more than one patient, minimizing fluid waste.


Assuntos
Anti-Infecciosos Locais/administração & dosagem , Irrigação Terapêutica/instrumentação , Ferimentos e Lesões/terapia , Desenho de Equipamento , Humanos , Soluções/administração & dosagem , Irrigação Terapêutica/métodos
4.
Biochem J ; 352 Pt 2: 425-33, 2000 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-11085936

RESUMO

Phosphorylation of protein kinase C (PKC) provides an amplitude control that operates in conjunction with allosteric effectors. Under many conditions, PKC isotypes appear to be highly phosphorylated; however, the cellular inputs that maintain these phosphorylations are not characterized. In the present work, it is shown that there is a differential phosphorylation of PKCdelta in adherent versus suspension cultures of transfected HEK-293 cells. It is established that integrin activation is sufficient to trigger PKCdelta phosphorylation and that this signals through phosphoinositide 3-kinase (PI3-kinase) to stimulate the phosphorylation of two sites, T505 and S662. The loss of signal input to PKCdelta in suspension culture is dependent on the tumour suppressor gene PTEN, which encodes a bi-functional phosphotyrosine/phosphoinositide 3-phosphate phosphatase. In the PTEN(-/-) UM-UC-3 bladder carcinoma cell line grown in suspension, transfected PKCdelta no longer accumulates in a dephospho-form on serum removal. By contrast, in a UM-UC-3-derivative cell line stably expressing PTEN, PKCdelta does become dephosphorylated under these conditions. Employing the PTEN Gly(129)-->Glu mutant, which is selectively defective in lipid phosphatase activity, it was established that it is the lipid phosphatase activity that controls PKCdelta phosphorylation. The evidence indicates that PKCdelta phosphorylation and its latent activity are maintained in serum-deprived adherent cultures through integrin-matrix interactions. This control acts through a pathway involving a lipid product of PI3-kinase in a manner that can be suppressed by PTEN.


Assuntos
Integrina beta1/metabolismo , Isoenzimas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Quinase C/metabolismo , Proteínas Supressoras de Tumor , Linhagem Celular , Ativação Enzimática , Humanos , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteína Quinase C-delta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA