Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Small ; 20(25): e2309919, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377304

RESUMO

Despite gold-based nanomaterials having a unique role in nanomedicine, among other fields, synthesis limitations relating to reaction scale-up and control result in prohibitively high gold nanoparticle costs. In this work, a new preparation procedure for lipid bilayer-coated gold nanoparticles in water is presented, using sodium oleate as reductant and capping agent. The seed-free synthesis not only allows for size precision (8-30 nm) but also remarkable particle concentration (10 mm Au). These reaction efficiencies allow for multiplexing and reaction standardization in 96-well plates using conventional thermocyclers, in addition to simple particle purification via microcentrifugation. Such a multiplexing approach also enables detailed spectroscopic investigation of the nonlinear growth process and dynamic sodium oleate/oleic acid self-assembly. In addition to scalability (at gram-level), resulting gold nanoparticles are stable at physiological pH, in common cell culture media, and are autoclavable. To demonstrate the versatility and applicability of the reported method, a robust ligand exchange with thiolated polyethylene glycol analogues is also presented.


Assuntos
Ouro , Nanopartículas Metálicas , Ácido Oleico , Ouro/química , Nanopartículas Metálicas/química , Ácido Oleico/química , Água/química , Bicamadas Lipídicas/química
2.
J Am Chem Soc ; 145(31): 17042-17055, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37524069

RESUMO

New synthetic hybrid materials and their increasing complexity have placed growing demands on crystal growth for single-crystal X-ray diffraction analysis. Unfortunately, not all chemical systems are conducive to the isolation of single crystals for traditional characterization. Here, small-molecule serial femtosecond crystallography (smSFX) at atomic resolution (0.833 Å) is employed to characterize microcrystalline silver n-alkanethiolates with various alkyl chain lengths at X-ray free electron laser facilities, resolving long-standing controversies regarding the atomic connectivity and odd-even effects of layer stacking. smSFX provides high-quality crystal structures directly from the powder of the true unknowns, a capability that is particularly useful for systems having notoriously small or defective crystals. We present crystal structures of silver n-butanethiolate (C4), silver n-hexanethiolate (C6), and silver n-nonanethiolate (C9). We show that an odd-even effect originates from the orientation of the terminal methyl group and its role in packing efficiency. We also propose a secondary odd-even effect involving multiple mosaic blocks in the crystals containing even-numbered chains, identified by selected-area electron diffraction measurements. We conclude with a discussion of the merits of the synthetic preparation for the preparation of microdiffraction specimens and compare the long-range order in these crystals to that of self-assembled monolayers.

3.
Nat Mater ; 20(2): 222-228, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33230325

RESUMO

Electrically conducting 2D metal-organic frameworks (MOFs) have attracted considerable interest, as their hexagonal 2D lattices mimic graphite and other 2D van der Waals stacked materials. However, understanding their intrinsic properties remains a challenge because their crystals are too small or of too poor quality for crystal structure determination. Here, we report atomically precise structures of a family of 2D π-conjugated MOFs derived from large single crystals of sizes up to 200 µm, allowing atomic-resolution analysis by a battery of high-resolution diffraction techniques. A designed ligand core rebalances the in-plane and out-of-plane interactions that define anisotropic crystal growth. We report two crystal structure types exhibiting analogous 2D honeycomb-like sheets but distinct packing modes and pore contents. Single-crystal electrical transport measurements distinctively demonstrate anisotropic transport normal and parallel to the π-conjugated sheets, revealing a clear correlation between absolute conductivity and the nature of the metal cation and 2D sheet packing motif.

4.
Nano Lett ; 21(2): 1141-1149, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33448858

RESUMO

In this work, we describe the radiolytic environment experienced by a polymer in water during liquid-cell transmission electron microscopy (LCTEM). We examined the radiolytic environment of aqueous solutions of poly(ethylene glycol) (PEG, 2400 g/mol) in the presence of sensitizing gold nanoparticles (GNPs, 100 nm) or radical scavenging isopropanol (IPA). To quantify polymer damage, we employed post-mortem analysis via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). This approach confirms IPA (1-10% w/v) can significantly mitigate radiolysis-induced damage to polymers in water, while GNPs significantly enhance damage. We couple LCTEM experiments with simulations to provide a generalizable strategy for assessing radiolysis mitigation or enhancement. This study highlights the caution required for LCTEM experiments on inorganic nanoparticles where solution phase properties of surrounding organic materials or the solvent itself are under investigation. Furthermore, we anticipate an increased use of scavengers for LCTEM studies of all kinds.

5.
Proc Natl Acad Sci U S A ; 115(45): 11507-11512, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348773

RESUMO

Many natural silks produced by spiders and insects are unique materials in their exceptional toughness and tensile strength, while being lightweight and biodegradable-properties that are currently unparalleled in synthetic materials. Myriad approaches have been attempted to prepare artificial silks from recombinant spider silk spidroins but have each failed to achieve the advantageous properties of the natural material. This is because of an incomplete understanding of the in vivo spidroin-to-fiber spinning process and, particularly, because of a lack of knowledge of the true morphological nature of spidroin nanostructures in the precursor dope solution and the mechanisms by which these nanostructures transform into micrometer-scale silk fibers. Herein we determine the physical form of the natural spidroin precursor nanostructures stored within spider glands that seed the formation of their silks and reveal the fundamental structural transformations that occur during the initial stages of extrusion en route to fiber formation. Using a combination of solution phase diffusion NMR and cryogenic transmission electron microscopy (cryo-TEM), we reveal direct evidence that the concentrated spidroin proteins are stored in the silk glands of black widow spiders as complex, hierarchical nanoassemblies (∼300 nm diameter) that are composed of micellar subdomains, substructures that themselves are engaged in the initial nanoscale transformations that occur in response to shear. We find that the established micelle theory of silk fiber precursor storage is incomplete and that the first steps toward liquid crystalline organization during silk spinning involve the fibrillization of nanoscale hierarchical micelle subdomains.


Assuntos
Viúva Negra/química , Fibroínas/ultraestrutura , Nanopartículas/química , Seda/ultraestrutura , Animais , Viúva Negra/fisiologia , Fibroínas/biossíntese , Fibroínas/química , Cristais Líquidos/química , Cristais Líquidos/ultraestrutura , Micelas , Microdissecção , Nanopartículas/ultraestrutura , Transição de Fase , Seda/biossíntese , Seda/química
6.
J Am Chem Soc ; 141(50): 19728-19735, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31743009

RESUMO

The synthesis of periodic two-dimensional (2D) polymers and characterization of their optoelectronic behaviors are challenges at the forefront of polymer chemistry and materials science. Recently, we showed that layered 2D polymers known as 2D covalent organic frameworks (COFs) can be synthesized as single crystals by preparing COF particles as colloidal suspensions. Here we expand this approach from the condensation of boronic acids and catechols to the dehydrative trimerization of polyboronic acids. The resulting boroxine-linked colloids are the next class of 2D COFs to be obtained as single-crystalline particles, as demonstrated here for four 2D COFs and one 3D COF. Colloidal stabilization enables detailed structural analysis by synchrotron X-ray diffraction and high-resolution transmission electron microscopy. Solution fluorescence spectroscopy revealed that the COF crystallites are highly emissive compared to their respective monomer solutions. Excitation-emission matrix fluorescence spectroscopy indicated that the origin of this enhanced emission can be attributed to through-space communication of chromophores between COF sheets. These observations will motivate the development of colloidal COF systems as a platform to organize functional aromatic systems into precise and predictable assemblies with emergent properties.

7.
Acc Chem Res ; 51(1): 3-11, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29227618

RESUMO

Revolutions in science and engineering frequently result from the development, and wide adoption, of a new, powerful characterization or imaging technique. Beginning with the first glass lenses and telescopes in astronomy, to the development of visual-light microscopy, staining techniques, confocal microscopy, and fluorescence super-resolution microscopy in biology, and most recently aberration-corrected, cryogenic, and ultrafast (4D) electron microscopy, X-ray microscopy, and scanning probe microscopy in nanoscience. Through these developments, our perception and understanding of the physical nature of matter at length-scales beyond ordinary perception have been fundamentally transformed. Despite this progression in microscopy, techniques for observing nanoscale chemical processes and solvated/hydrated systems are limited, as the necessary spatial and temporal resolution presents significant technical challenges. However, the standard reliance on indirect or bulk phase characterization of nanoscale samples in liquids is undergoing a shift in recent times with the realization ( Williamson et al. Nat. Mater . 2003 , 2 , 532 - 536 ) of liquid-cell (scanning) transmission electron microscopy, LC(S)TEM, where picoliters of solution are hermetically sealed between electron-transparent "windows," which can be directly imaged or videoed at the nanoscale using conventional transmission electron microscopes. This Account seeks to open a discussion on the topic of standardizing strategies for conducting imaging experiments with a view to characterizing dynamics and motion of nanoscale materials. This is a challenge that could be described by critics and proponents alike, as analogous to doing chemistry in a lightning storm; where the nature of the solution, the nanomaterial, and the dynamic behaviors are all potentially subject to artifactual influence by the very act of our observation.


Assuntos
Microscopia Eletrônica de Transmissão , Elétrons , Tamanho da Partícula , Propriedades de Superfície
8.
J Am Chem Soc ; 140(4): 1348-1357, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29268603

RESUMO

Postsynthetic strategies for modifying metal-organic frameworks (MOFs) have proven to be an incredibly powerful approach for expanding the scope and functionality of these materials. Previously, we reported on the postsynthetic exchange (PSE) of metal ions and ligands in the University of Oslo (UiO) series of MOFs. Detailed characterization by several analytical methods, most notably inductively coupled plasma mass spectrometry and transmission electron microscopy reveal that metal ion deposition on the surface of these MOFs occurs in the form of nanoscale metal oxides, rather than yielding exchanged metal sites within the MOFs, as was previously reported. By contrast, these combined analytical methods do confirm that ligand-based PSE can occur in these MOFs. These findings provide new insight into the postsynthetic manipulation of MOF materials, highlight the importance of rigorously characterizing these materials to correctly assign their composition and structure, and provide a new route to making hybrid solids with a MOF@metal oxide architecture.


Assuntos
Estruturas Metalorgânicas/química , Óxidos/química , Zircônio/química , Ligantes , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Propriedades de Superfície
9.
J Am Chem Soc ; 139(40): 13973-13976, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28942647

RESUMO

Metal-organic frameworks (MOFs) have emerged as a versatile platform for the rational design of multifunctional materials, combining large specific surface areas with flexible, periodic frameworks that can undergo reversible structural transitions, or "breathing", upon temperature and pressure changes, and through gas adsorption/desorption processes. Although MOF breathing can be inferred from the analysis of adsorption isotherms, direct observation of the structural transitions has been lacking, and the underlying processes of framework reorganization in individual MOF nanocrystals is largely unknown. In this study, we describe the characterization and elucidation of these processes through the combination of in situ environmental transmission electron microscopy (ETEM) and computer simulations. This combined approach enables the direct monitoring of the breathing behavior of individual MIL-53(Cr) nanocrystals upon reversible water adsorption and temperature changes. The ability to characterize structural changes in single nanocrystals and extract lattice level information through in silico correlation provides fundamental insights into the relationship between pore size/shape and host-guest interactions.


Assuntos
Estruturas Metalorgânicas/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Cromo/química , Simulação por Computador , Estruturas Metalorgânicas/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/ultraestrutura , Porosidade , Temperatura , Água/química
10.
J Am Chem Soc ; 139(47): 17140-17151, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29145727

RESUMO

Amphiphilic small molecules and polymers form commonplace nanoscale macromolecular compartments and bilayers, and as such are truly essential components in all cells and in many cellular processes. The nature of these architectures, including their formation, phase changes, and stimuli-response behaviors, is necessary for the most basic functions of life, and over the past half-century, these natural micellar structures have inspired a vast diversity of industrial products, from biomedicines to detergents, lubricants, and coatings. The importance of these materials and their ubiquity have made them the subject of intense investigation regarding their nanoscale dynamics with increasing interest in obtaining sufficient temporal and spatial resolution to directly observe nanoscale processes. However, the vast majority of experimental methods involve either bulk-averaging techniques including light, neutron, and X-ray scattering, or are static in nature including even the most advanced cryogenic transmission electron microscopy techniques. Here, we employ in situ liquid-cell transmission electron microscopy (LCTEM) to directly observe the evolution of individual amphiphilic block copolymer micellar nanoparticles in solution, in real time with nanometer spatial resolution. These observations, made on a proof-of-concept bioconjugate polymer amphiphile, revealed growth and evolution occurring by unimer addition processes and by particle-particle collision-and-fusion events. The experimental approach, combining direct LCTEM observation, quantitative analysis of LCTEM data, and correlated in silico simulations, provides a unique view of solvated soft matter nanoassemblies as they morph and evolve in time and space, enabling us to capture these phenomena in solution.


Assuntos
Micelas , Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Nanopartículas/química , Polímeros/química
11.
Langmuir ; 32(6): 1468-77, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26741639

RESUMO

Synthesizing nanomaterials of uniform shape and size is of critical importance to access and manipulate the novel structure-property relationships arising at the nanoscale, such as catalytic activity. In this work, we synthesize Pd nanoparticles with well-controlled size in the sub-3 nm range using scanning transmission electron microscopy (STEM) in combination with an in situ liquid stage. We use an aromatic hydrocarbon (toluene) as a solvent that is very resistant to high-energy electron irradiation, which creates a net reducing environment without the need for additives to scavenge oxidizing radicals. The primary reducing species is molecular hydrogen, which is a widely used reductant in the synthesis of supported metal catalysts. We propose a mechanism of particle formation based on the effect of tri-n-octylphosphine (TOP) on size stabilization, relatively low production of radicals, and autocatalytic reduction of Pd(II) compounds. We combine in situ STEM results with insights from in situ small-angle X-ray scattering (SAXS) from alcohol-based synthesis, having similar reduction potential, in a customized microfluidic device as well as ex situ bulk experiments. This has allowed us to develop a fundamental growth model for the synthesis of size-stabilized Pd nanoparticles and demonstrate the utility of correlating different in situ and ex situ characterization techniques to understand, and ultimately control, metal nanostructure synthesis.

12.
Microsc Microanal ; 22(3): 507-14, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27135268

RESUMO

Liquid cell transmission electron microscopy (LCTEM) provides a unique insight into the dynamics of nanomaterials in solution. Controlling the addition of multiple solutions to the liquid cell remains a key hurdle in our ability to increase throughput and to study processes dependent on solution mixing including chemical reactions. Here, we report that a piezo dispensing technique allows for mixing of multiple solutions directly within the viewing area. This technique permits deposition of 50 pL droplets of various aqueous solutions onto the liquid cell window, before assembly of the cell in a fully controlled manner. This proof-of-concept study highlights the great potential of picoliter dispensing in combination with LCTEM for observing nanoparticle mixing in the solution phase and the creation of chemical gradients.

13.
Nano Lett ; 15(2): 1177-82, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25531653

RESUMO

Magnesium is of great interest as a replacement for lithium in next-generation ion-transfer batteries but Mg-metal anodes currently face critical challenges related to the formation of passivating layers during Mg-plating/stripping and anode-electrolyte-cathode incompatibilities. Alternative anode materials have the potential to greatly extend the spectrum of suitable electrolyte chemistries but must be systematically tailored for effective Mg(2+) storage. Using analytical (scanning) transmission electron microscopy ((S)TEM) and ab initio modeling, we have investigated Mg(2+) insertion and extraction mechanisms and transformation processes in ß-SnSb nanoparticles (NPs), a promising Mg-alloying anode material. During the first several charge-discharge cycles (conditioning), the ß-SnSb particles irreversibly transform into a porous network of pure-Sn and Sb-rich subparticles, as Mg ions replace Sn atoms in the SnSb lattice. After electrochemical conditioning, small Sn particles/grains (<33 ± 20 nm) exhibit highly reversible Mg-storage, while the Sb-rich domains suffer substantial Mg trapping and contribute little to the system performance. This result strongly indicates that pure Sn can act as a high-capacity Mg-insertion anode as theoretically predicted, but that its performance is strongly size-dependent, and stable nanoscale Sn morphologies (<40 nm) are needed for superior, reversible Mg-storage and fast system kinetics.

14.
Nano Lett ; 14(3): 1293-9, 2014 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-24559146

RESUMO

Development of novel electrolytes with increased electrochemical stability is critical for the next generation battery technologies. In situ electrochemical fluid cells provide the ability to rapidly and directly characterize electrode/electrolyte interfacial reactions under conditions directly relevant to the operation of practical batteries. In this paper, we have studied the breakdown of a range of inorganic/salt complexes relevant to state-of-the-art Li-ion battery systems by in situ (scanning) transmission electron microscopy ((S)TEM). In these experiments, the electron beam itself caused the localized electrochemical reaction that allowed us to observe electrolyte breakdown in real-time. The results of the in situ (S)TEM experiments matches with previous stability tests performed during battery operation and the breakdown products and mechanisms are also consistent with known mechanisms. This analysis indicates that in situ liquid stage (S)TEM observations could be used to directly test new electrolyte designs and identify a smaller library of candidate solutions deserving of more detailed characterization. A systematic study of electrolyte degradation is also a necessary first step for any future controlled in operando liquid (S)TEM experiments intent on visualizing working batteries at the nanoscale.

15.
Microsc Microanal ; 20(2): 484-92, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24755142

RESUMO

The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

16.
Nano Lett ; 13(12): 6106-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24224495

RESUMO

Over the past few years, in situ transmission electron microscopy (TEM) studies of lithium ion batteries using an open-cell configuration have helped us to gain fundamental insights into the structural and chemical evolution of the electrode materials in real time. In the standard open-cell configuration, the electrolyte is either solid lithium oxide or an ionic liquid, which is point-contacted with the electrode. This cell design is inherently different from a real battery, where liquid electrolyte forms conformal contact with electrode materials. The knowledge learnt from open cells can deviate significantly from the real battery, calling for operando TEM technique with conformal liquid electrolyte contact. In this paper, we developed an operando TEM electrochemical liquid cell to meet this need, providing the configuration of a real battery and in a relevant liquid electrolyte. To demonstrate this novel technique, we studied the lithiation/delithiation behavior of single Si nanowires. Some of lithiation/delithation behaviors of Si obtained using the liquid cell are consistent with the results from the open-cell studies. However, we also discovered new insights different from the open cell configuration-the dynamics of the electrolyte and, potentially, a future quantitative characterization of the solid electrolyte interphase layer formation and structural and chemical evolution.


Assuntos
Lítio/química , Nanofios/química , Silício/química , Fontes de Energia Elétrica , Eletroquímica , Eletrodos , Microscopia Eletrônica de Transmissão , Propriedades de Superfície
17.
Adv Mater ; 36(19): e2311341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38332453

RESUMO

Use of single-atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high-loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono- and bi-metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X-ray absorption spectroscopy and, finally, the catalytic performance of a UPD-synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes.

18.
ACS Macro Lett ; 10(1): 14-38, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35548998

RESUMO

A century ago, Hermann Staudinger proposed the macromolecular theory of polymers, and now, as we enter the second century of polymer science, we face a different set of opportunities and challenges for the development of functional soft matter. Indeed, many fundamental questions remain open, relating to physical structures and mechanisms of phase transformations at the molecular and nanoscale. In this Viewpoint, we describe efforts to develop a dynamic, in situ microscopy tool suited to the study of polymeric materials at the nanoscale that allows for direct observation of discrete structures and processes in solution, as a complement to light, neutron, and X-ray scattering methods. Liquid-phase transmission electron microscopy (LPTEM) is a nascent in situ imaging technique for characterizing and examining solvated nanomaterials in real time. Though still under development, LPTEM has been shown to be capable of several modes of imaging: (1) imaging static solvated materials analogous to cryo-TEM, (2) videography of nanomaterials in motion, (3) observing solutions or nanomaterials undergoing physical and chemical transformations, including synthesis, assembly, and phase transitions, and (4) observing electron beam-induced chemical-materials processes. Herein, we describe opportunities and limitations of LPTEM for polymer science. We review the basic experimental platform of LPTEM and describe the origin of electron beam effects that go hand in hand with the imaging process. These electron beam effects cause perturbation and damage to the sample and solvent that can manifest as artefacts in images and videos. We describe sample-specific experimental guidelines and outline approaches to mitigate, characterize, and quantify beam damaging effects. Altogether, we seek to provide an overview of this nascent field in the context of its potential to contribute to the advancement of polymer science.


Assuntos
Aniversários e Eventos Especiais , Polímeros , Substâncias Macromoleculares , Microscopia Eletrônica de Transmissão , Polímeros/química
19.
Nat Commun ; 12(1): 6568, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34772926

RESUMO

Herein, phase transitions of a class of thermally-responsive polymers, namely a homopolymer, diblock, and triblock copolymer, were studied to gain mechanistic insight into nanoscale assembly dynamics via variable temperature liquid-cell transmission electron microscopy (VT-LCTEM) correlated with variable temperature small angle X-ray scattering (VT-SAXS). We study thermoresponsive poly(diethylene glycol methyl ether methacrylate) (PDEGMA)-based block copolymers and mitigate sample damage by screening electron flux and solvent conditions during LCTEM and by evaluating polymer survival via post-mortem matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). Our multimodal approach, utilizing VT-LCTEM with MS validation and VT-SAXS, is generalizable across polymeric systems and can be used to directly image solvated nanoscale structures and thermally-induced transitions. Our strategy of correlating VT-SAXS with VT-LCTEM provided direct insight into transient nanoscale intermediates formed during the thermally-triggered morphological transformation of a PDEGMA-based triblock. Notably, we observed the temperature-triggered formation and slow relaxation of core-shell particles with complex microphase separation in the core by both VT-SAXS and VT-LCTEM.


Assuntos
Microscopia Eletrônica de Transmissão/métodos , Polímeros/química , Espalhamento a Baixo Ângulo , Temperatura , Etilenoglicol/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Difração de Raios X , Raios X
20.
J Phys Chem C Nanomater Interfaces ; 124(27): 14881-14890, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-33841603

RESUMO

Liquid-cell transmission electron microscopy (LCTEM) is a powerful in situ videography technique that has the potential to allow us to observe solution-phase dynamic processes at the nanoscale, including imaging the diffusion and interaction of nanoparticles. Artefactual effects imposed by the irradiated and confined liquid-cell vessel alter the system from normal "bulk-like" behavior in multiple ways. These artefactual LCTEM effects will leave their fingerprints in the motion behavior of the diffusing objects, which can be revealed through careful analysis of the object-motion trajectories. Improper treatment of the motion data can lead to erroneous descriptions of the LCTEM system's conditions. Here, we advance our anomalous diffusion object-motion analysis (ADOMA) method to extract a detailed description of the liquid-cell system conditions during any LCTEM experiment by applying a multistep analysis of the data and treating the x/y vectors of motion independently and in correlation with each other and with the object's orientation/angle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA