Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 178(4): 779-794, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398336

RESUMO

Metagenomic sequencing is revolutionizing the detection and characterization of microbial species, and a wide variety of software tools are available to perform taxonomic classification of these data. The fast pace of development of these tools and the complexity of metagenomic data make it important that researchers are able to benchmark their performance. Here, we review current approaches for metagenomic analysis and evaluate the performance of 20 metagenomic classifiers using simulated and experimental datasets. We describe the key metrics used to assess performance, offer a framework for the comparison of additional classifiers, and discuss the future of metagenomic data analysis.


Assuntos
Bactérias/classificação , Benchmarking/métodos , Fungos/classificação , Metagenoma/genética , Metagenômica/métodos , Vírus/classificação , Bactérias/genética , Bases de Dados Genéticas , Fungos/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Software , Vírus/genética
2.
Cell ; 161(7): 1516-26, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091036

RESUMO

The 2013-2015 Ebola virus disease (EVD) epidemic is caused by the Makona variant of Ebola virus (EBOV). Early in the epidemic, genome sequencing provided insights into virus evolution and transmission and offered important information for outbreak response. Here, we analyze sequences from 232 patients sampled over 7 months in Sierra Leone, along with 86 previously released genomes from earlier in the epidemic. We confirm sustained human-to-human transmission within Sierra Leone and find no evidence for import or export of EBOV across national borders after its initial introduction. Using high-depth replicate sequencing, we observe both host-to-host transmission and recurrent emergence of intrahost genetic variants. We trace the increasing impact of purifying selection in suppressing the accumulation of nonsynonymous mutations over time. Finally, we note changes in the mucin-like domain of EBOV glycoprotein that merit further investigation. These findings clarify the movement of EBOV within the region and describe viral evolution during prolonged human-to-human transmission.


Assuntos
Ebolavirus/genética , Ebolavirus/isolamento & purificação , Genoma Viral , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , Mutação , Evolução Biológica , Surtos de Doenças , Ebolavirus/classificação , Doença pelo Vírus Ebola/transmissão , Humanos , Serra Leoa/epidemiologia , Manejo de Espécimes
3.
Cell ; 152(4): 703-13, 2013 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-23415221

RESUMO

Although several hundred regions of the human genome harbor signals of positive natural selection, few of the relevant adaptive traits and variants have been elucidated. Using full-genome sequence variation from the 1000 Genomes (1000G) Project and the composite of multiple signals (CMS) test, we investigated 412 candidate signals and leveraged functional annotation, protein structure modeling, epigenetics, and association studies to identify and extensively annotate candidate causal variants. The resulting catalog provides a tractable list for experimental follow-up; it includes 35 high-scoring nonsynonymous variants, 59 variants associated with expression levels of a nearby coding gene or lincRNA, and numerous variants associated with susceptibility to infectious disease and other phenotypes. We experimentally characterized one candidate nonsynonymous variant in Toll-like receptor 5 (TLR5) and show that it leads to altered NF-κB signaling in response to bacterial flagellin. PAPERFLICK:


Assuntos
Técnicas Genéticas , Genoma Humano , Estudo de Associação Genômica Ampla , Mutação , Animais , Bactérias/metabolismo , Flagelina/metabolismo , Projeto HapMap , Humanos , NF-kappa B/metabolismo , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Transdução de Sinais , Receptor 5 Toll-Like/genética , Receptor 5 Toll-Like/metabolismo
4.
PLoS Biol ; 21(6): e3002151, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37310918

RESUMO

The 2022 multicountry mpox outbreak concurrent with the ongoing Coronavirus Disease 2019 (COVID-19) pandemic further highlighted the need for genomic surveillance and rapid pathogen whole-genome sequencing. While metagenomic sequencing approaches have been used to sequence many of the early mpox infections, these methods are resource intensive and require samples with high viral DNA concentrations. Given the atypical clinical presentation of cases associated with the outbreak and uncertainty regarding viral load across both the course of infection and anatomical body sites, there was an urgent need for a more sensitive and broadly applicable sequencing approach. Highly multiplexed amplicon-based sequencing (PrimalSeq) was initially developed for sequencing of Zika virus, and later adapted as the main sequencing approach for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we used PrimalScheme to develop a primer scheme for human monkeypox virus that can be used with many sequencing and bioinformatics pipelines implemented in public health laboratories during the COVID-19 pandemic. We sequenced clinical specimens that tested presumptively positive for human monkeypox virus with amplicon-based and metagenomic sequencing approaches. We found notably higher genome coverage across the virus genome, with minimal amplicon drop-outs, in using the amplicon-based sequencing approach, particularly in higher PCR cycle threshold (Ct) (lower DNA titer) samples. Further testing demonstrated that Ct value correlated with the number of sequencing reads and influenced the percent genome coverage. To maximize genome coverage when resources are limited, we recommend selecting samples with a PCR Ct below 31 Ct and generating 1 million sequencing reads per sample. To support national and international public health genomic surveillance efforts, we sent out primer pool aliquots to 10 laboratories across the United States, United Kingdom, Brazil, and Portugal. These public health laboratories successfully implemented the human monkeypox virus primer scheme in various amplicon sequencing workflows and with different sample types across a range of Ct values. Thus, we show that amplicon-based sequencing can provide a rapidly deployable, cost-effective, and flexible approach to pathogen whole-genome sequencing in response to newly emerging pathogens. Importantly, through the implementation of our primer scheme into existing SARS-CoV-2 workflows and across a range of sample types and sequencing platforms, we further demonstrate the potential of this approach for rapid outbreak response.


Assuntos
COVID-19 , Mpox , Infecção por Zika virus , Zika virus , Humanos , COVID-19/epidemiologia , Pandemias , SARS-CoV-2/genética , Genômica
5.
Magn Reson Med ; 91(2): 541-557, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37753621

RESUMO

PURPOSE: To investigate whether spatiotemporal magnetic field monitoring can correct pronounced eddy current-induced artifacts incurred by strong diffusion-sensitizing gradients up to 300 mT/m used in high b-value diffusion-weighted (DW) EPI. METHODS: A dynamic field camera equipped with 16 1 H NMR field probes was first used to characterize field perturbations caused by residual eddy currents from diffusion gradients waveforms in a 3D multi-shot EPI sequence on a 3T Connectom scanner for different gradient strengths (up to 300 mT/m), diffusion directions, and shots. The efficacy of dynamic field monitoring-based image reconstruction was demonstrated on high-gradient strength, submillimeter resolution whole-brain ex vivo diffusion MRI. A 3D multi-shot image reconstruction framework was developed that incorporated the nonlinear phase evolution measured with the dynamic field camera. RESULTS: Phase perturbations in the readout induced by residual eddy currents from strong diffusion gradients are highly nonlinear in space and time, vary among diffusion directions, and interfere significantly with the image encoding gradients, changing the k-space trajectory. During the readout, phase modulations between odd and even EPI echoes become non-static and diffusion encoding direction-dependent. Superior reduction of ghosting and geometric distortion was achieved with dynamic field monitoring compared to ghosting reduction approaches such as navigator- and structured low-rank-based methods or MUSE followed by image-based distortion correction with the FSL tool "eddy." CONCLUSION: Strong eddy current artifacts characteristic of high-gradient strength DW-EPI can be well corrected with dynamic field monitoring-based image reconstruction.


Assuntos
Artefatos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Ecoplanar/métodos
6.
PLoS Biol ; 18(2): e3000611, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045407

RESUMO

Unusually large outbreaks of mumps across the United States in 2016 and 2017 raised questions about the extent of mumps circulation and the relationship between these and prior outbreaks. We paired epidemiological data from public health investigations with analysis of mumps virus whole genome sequences from 201 infected individuals, focusing on Massachusetts university communities. Our analysis suggests continuous, undetected circulation of mumps locally and nationally, including multiple independent introductions into Massachusetts and into individual communities. Despite the presence of these multiple mumps virus lineages, the genomic data show that one lineage has dominated in the US since at least 2006. Widespread transmission was surprising given high vaccination rates, but we found no genetic evidence that variants arising during this outbreak contributed to vaccine escape. Viral genomic data allowed us to reconstruct mumps transmission links not evident from epidemiological data or standard single-gene surveillance efforts and also revealed connections between apparently unrelated mumps outbreaks.


Assuntos
Surtos de Doenças , Genoma Viral/genética , Vírus da Caxumba/genética , Caxumba/epidemiologia , Caxumba/transmissão , Genótipo , Humanos , Epidemiologia Molecular , Caxumba/virologia , Vírus da Caxumba/classificação , Mutação , Filogenia , Análise de Sequência de DNA , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricos , Proteínas Virais/genética
7.
Nature ; 544(7650): 309-315, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28405027

RESUMO

The 2013-2016 West African epidemic caused by the Ebola virus was of unprecedented magnitude, duration and impact. Here we reconstruct the dispersal, proliferation and decline of Ebola virus throughout the region by analysing 1,610 Ebola virus genomes, which represent over 5% of the known cases. We test the association of geography, climate and demography with viral movement among administrative regions, inferring a classic 'gravity' model, with intense dispersal between larger and closer populations. Despite attenuation of international dispersal after border closures, cross-border transmission had already sown the seeds for an international epidemic, rendering these measures ineffective at curbing the epidemic. We address why the epidemic did not spread into neighbouring countries, showing that these countries were susceptible to substantial outbreaks but at lower risk of introductions. Finally, we reveal that this large epidemic was a heterogeneous and spatially dissociated collection of transmission clusters of varying size, duration and connectivity. These insights will help to inform interventions in future epidemics.


Assuntos
Ebolavirus/genética , Ebolavirus/fisiologia , Genoma Viral/genética , Doença pelo Vírus Ebola/transmissão , Doença pelo Vírus Ebola/virologia , Clima , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/isolamento & purificação , Geografia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Internacionalidade , Modelos Lineares , Epidemiologia Molecular , Filogenia , Viagem/legislação & jurisprudência , Viagem/estatística & dados numéricos
8.
Nature ; 546(7658): 401-405, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28538723

RESUMO

Zika virus (ZIKV) is causing an unprecedented epidemic linked to severe congenital abnormalities. In July 2016, mosquito-borne ZIKV transmission was reported in the continental United States; since then, hundreds of locally acquired infections have been reported in Florida. To gain insights into the timing, source, and likely route(s) of ZIKV introduction, we tracked the virus from its first detection in Florida by sequencing ZIKV genomes from infected patients and Aedes aegypti mosquitoes. We show that at least 4 introductions, but potentially as many as 40, contributed to the outbreak in Florida and that local transmission is likely to have started in the spring of 2016-several months before its initial detection. By analysing surveillance and genetic data, we show that ZIKV moved among transmission zones in Miami. Our analyses show that most introductions were linked to the Caribbean, a finding corroborated by the high incidence rates and traffic volumes from the region into the Miami area. Our study provides an understanding of how ZIKV initiates transmission in new regions.


Assuntos
Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia , Zika virus/genética , Aedes/virologia , Animais , Região do Caribe/epidemiologia , Surtos de Doenças/estatística & dados numéricos , Feminino , Florida/epidemiologia , Genoma Viral/genética , Humanos , Incidência , Epidemiologia Molecular , Mosquitos Vetores/virologia , Zika virus/isolamento & purificação , Infecção por Zika virus/transmissão
9.
Nature ; 546(7658): 411-415, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28538734

RESUMO

Although the recent Zika virus (ZIKV) epidemic in the Americas and its link to birth defects have attracted a great deal of attention, much remains unknown about ZIKV disease epidemiology and ZIKV evolution, in part owing to a lack of genomic data. Here we address this gap in knowledge by using multiple sequencing approaches to generate 110 ZIKV genomes from clinical and mosquito samples from 10 countries and territories, greatly expanding the observed viral genetic diversity from this outbreak. We analysed the timing and patterns of introductions into distinct geographic regions; our phylogenetic evidence suggests rapid expansion of the outbreak in Brazil and multiple introductions of outbreak strains into Puerto Rico, Honduras, Colombia, other Caribbean islands, and the continental United States. We find that ZIKV circulated undetected in multiple regions for many months before the first locally transmitted cases were confirmed, highlighting the importance of surveillance of viral infections. We identify mutations with possible functional implications for ZIKV biology and pathogenesis, as well as those that might be relevant to the effectiveness of diagnostic tests.


Assuntos
Filogenia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/isolamento & purificação , Animais , Brasil/epidemiologia , Colômbia/epidemiologia , Culicidae/virologia , Surtos de Doenças/estatística & dados numéricos , Genoma Viral/genética , Mapeamento Geográfico , Honduras/epidemiologia , Humanos , Metagenoma/genética , Epidemiologia Molecular , Mosquitos Vetores/virologia , Mutação , Vigilância em Saúde Pública , Porto Rico/epidemiologia , Estados Unidos/epidemiologia , Zika virus/classificação , Zika virus/patogenicidade , Infecção por Zika virus/diagnóstico , Infecção por Zika virus/epidemiologia
10.
Muscle Nerve ; 66(2): 206-211, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621349

RESUMO

INTRODUCTION/AIMS: Magnetic resonance imaging (MRI) of peripheral nerves can provide image-based anatomical information and quantitative measurement. The aim of this pilot study was to investigate the feasibility of high-resolution anatomical and quantitative MRI assessment of sciatic nerve fascicles in patients with Charcot-Marie-Tooth (CMT) 1A using 7T field strength. METHODS: Six patients with CMT1A underwent imaging on a high-gradient 7T MRI scanner using a 28-channel knee coil. Two high-resolution axial images were simultaneously acquired using a quantitative double-echo in steady-state (DESS) sequence. By comparing the two DESS echoes, T2 and apparent diffusion coefficient (ADC) maps were calculated. The cross-sectional areas and mean T2 and ADC were measured in individual fascicles of the tibial and fibular (peroneal) portions of the sciatic nerve at its bifurcation and 10 mm distally. Disease severity was measured using Charcot-Marie-Tooth Examination Score (CMTES) version 2 and compared to imaging findings. RESULTS: We demonstrated the feasibility of 7T MRI of the proximal sciatic nerve in patients with CMT1A. Using the higher field, it was possible to measure individual bundles in the tibial and fibular divisions of the sciatic nerve. There was no apparent correlation between diffusion measures and disease severity in this small cohort. DISCUSSION: This pilot study indicated that high-resolution MRI that allows for combined anatomical and quantitative imaging in one scan is feasible at 7T field strengths and can be used to investigate the microstructure of individual nerve fascicles.


Assuntos
Doença de Charcot-Marie-Tooth , Doença de Charcot-Marie-Tooth/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Estudos de Viabilidade , Humanos , Imageamento por Ressonância Magnética/métodos , Projetos Piloto , Nervo Isquiático/diagnóstico por imagem , Nervo Isquiático/patologia
11.
Molecules ; 27(18)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36144649

RESUMO

New therapeutic options to combat the growing incidence of antimicrobial resistance are urgently needed. A 2015 publication reported the isolation and biological evaluation of two diketopiperazine natural products, cyclo(l-Trp-l-Arg) (CDP 2) and cyclo(d-Trp-d-Arg) (CDP 3), from an Achromobacter sp. bacterium, finding that the latter metabolite in particular exhibited strong antibacterial activity towards a range of wound-related microorganisms and could synergize the action of ampicillin. Intrigued by these biological activities and noting inconsistencies in the structural characterization of the natural products, we synthesized the four diastereomers of cyclo(Trp-Arg) and evaluated them for antimicrobial and antibiotic enhancement properties. The detailed comparison of spectroscopic data raises uncertainty regarding the structure of CDP 2 and disproves the structure of CDP 3. In our hands, none of the four stereoisomers of cyclo(Trp-Arg) exhibited detectable intrinsic antimicrobial properties towards a range of Gram-positive and Gram-negative bacteria or fungi nor could they potentiate the action of antibiotics. These discrepancies in biological properties, compared with the activities reported in the literature, reveal that these specific cyclic dipeptides do not represent viable templates for the development of new treatments for microbial infections.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Ampicilina , Antibacterianos/química , Anti-Infecciosos/farmacologia , Produtos Biológicos/farmacologia , Dicetopiperazinas/química , Dipeptídeos/química , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Estereoisomerismo , Incerteza
13.
N Engl J Med ; 379(18): 1745-1753, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30332564

RESUMO

During 2018, an unusual increase in Lassa fever cases occurred in Nigeria, raising concern among national and international public health agencies. We analyzed 220 Lassa virus genomes from infected patients, including 129 from the 2017-2018 transmission season, to understand the viral populations underpinning the increase. A total of 14 initial genomes from 2018 samples were generated at Redeemer's University in Nigeria, and the findings were shared with the Nigerian Center for Disease Control in real time. We found that the increase in cases was not attributable to a particular Lassa virus strain or sustained by human-to-human transmission. Instead, the data were consistent with ongoing cross-species transmission from local rodent populations. Phylogenetic analysis also revealed extensive viral diversity that was structured according to geography, with major rivers appearing to act as barriers to migration of the rodent reservoir.


Assuntos
Genoma Viral , Febre Lassa/virologia , Vírus Lassa/genética , RNA Viral/análise , Adolescente , Adulto , Animais , Teorema de Bayes , Reservatórios de Doenças , Feminino , Variação Genética , Humanos , Febre Lassa/epidemiologia , Febre Lassa/transmissão , Masculino , Cadeias de Markov , Pessoa de Meia-Idade , Nigéria/epidemiologia , Filogenia , Filogeografia , Roedores , Análise de Sequência de RNA , Zoonoses/transmissão
14.
Magn Reson Med ; 85(1): 120-139, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32705723

RESUMO

PURPOSE: To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. THEORY AND METHODS: Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. RESULTS: The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing. CONCLUSIONS: VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.


Assuntos
Imagem Ecoplanar , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador
15.
Magn Reson Med ; 86(2): 738-753, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33749017

RESUMO

PURPOSE: Most voxels in white matter contain multiple fiber populations with different orientations and levels of myelination. Conventional T1 mapping measures 1 T1 value per voxel, representing a weighted average of the multiple tract T1 times. Inversion-recovery diffusion-weighted imaging (IR-DWI) allows the T1 times of multiple tracts in a voxel to be disentangled, but the scan time is prohibitively long. Recently, slice-shuffled IR-DWI implementations have been proposed to significantly reduce scan time. In this work, we demonstrate that we can measure tract-specific T1 values in the whole brain using simultaneous multi-slice slice-shuffled IR-DWI at 3T. METHODS: We perform simulations to evaluate the accuracy and precision of our crossing fiber IR-DWI signal model for various fiber parameters. The proposed sequence and signal model are tested in a phantom consisting of crossing asparagus pieces doped with gadolinium to vary T1 , and in 2 human subjects. RESULTS: Our simulations show that tract-specific T1 times can be estimated within 5% of the nominal fiber T1 values. Tract-specific T1 values were resolved in subvoxel 2 fiber crossings in the asparagus phantom. Tract-specific T1 times were resolved in 2 different tract crossings in the human brain where myelination differences have previously been reported; the crossing of the cingulum and genu of the corpus callosum and the crossing of the corticospinal tract and pontine fibers. CONCLUSION: Whole-brain tract-specific T1 mapping is feasible using slice-shuffled IR-DWI at 3T. This technique has the potential to improve the microstructural characterization of specific tracts implicated in neurodevelopment, aging, and demyelinating disorders.


Assuntos
Substância Branca , Encéfalo/diagnóstico por imagem , Corpo Caloso , Imagem de Difusão por Ressonância Magnética , Humanos , Tratos Piramidais , Substância Branca/diagnóstico por imagem
16.
MMWR Morb Mortal Wkly Rep ; 70(31): 1059-1062, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34351882

RESUMO

During July 2021, 469 cases of COVID-19 associated with multiple summer events and large public gatherings in a town in Barnstable County, Massachusetts, were identified among Massachusetts residents; vaccination coverage among eligible Massachusetts residents was 69%. Approximately three quarters (346; 74%) of cases occurred in fully vaccinated persons (those who had completed a 2-dose course of mRNA vaccine [Pfizer-BioNTech or Moderna] or had received a single dose of Janssen [Johnson & Johnson] vaccine ≥14 days before exposure). Genomic sequencing of specimens from 133 patients identified the B.1.617.2 (Delta) variant of SARS-CoV-2, the virus that causes COVID-19, in 119 (89%) and the Delta AY.3 sublineage in one (1%). Overall, 274 (79%) vaccinated patients with breakthrough infection were symptomatic. Among five COVID-19 patients who were hospitalized, four were fully vaccinated; no deaths were reported. Real-time reverse transcription-polymerase chain reaction (RT-PCR) cycle threshold (Ct) values in specimens from 127 vaccinated persons with breakthrough cases were similar to those from 84 persons who were unvaccinated, not fully vaccinated, or whose vaccination status was unknown (median = 22.77 and 21.54, respectively). The Delta variant of SARS-CoV-2 is highly transmissible (1); vaccination is the most important strategy to prevent severe illness and death. On July 27, CDC recommended that all persons, including those who are fully vaccinated, should wear masks in indoor public settings in areas where COVID-19 transmission is high or substantial.* Findings from this investigation suggest that even jurisdictions without substantial or high COVID-19 transmission might consider expanding prevention strategies, including masking in indoor public settings regardless of vaccination status, given the potential risk of infection during attendance at large public gatherings that include travelers from many areas with differing levels of transmission.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Aglomeração , Surtos de Doenças , Adolescente , Adulto , Idoso , Vacinas contra COVID-19/administração & dosagem , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Massachusetts/epidemiologia , Pessoa de Meia-Idade , Adulto Jovem
17.
Int J Cancer ; 147(8): 2142-2149, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32338768

RESUMO

Few genetic risk factors have been demonstrated to be specifically associated with aggressive prostate cancer (PrCa). Here, we report a case-case study of PrCa comparing the prevalence of germline pathogenic/likely pathogenic (P/LP) genetic variants in 787 men with aggressive disease and 769 with nonaggressive disease. Overall, we observed P/LP variants in 11.4% of men with aggressive PrCa and 9.8% of men with nonaggressive PrCa (two-tailed Fisher's exact tests, P = .28). The proportion of BRCA2 and ATM P/LP variant carriers in men with aggressive PrCa exceeded that observed in men with nonaggressive PrCa; 18/787 carriers (2.3%) and 4/769 carriers (0.5%), P = .004, and 14/787 carriers (0.02%) and 5/769 carriers (0.01%), P = .06, respectively. Our findings contribute to the extensive international effort to interpret the genetic variation identified in genes included on gene-panel tests, for which there is currently an insufficient evidence-base for clinical translation in the context of PrCa risk.


Assuntos
Células Germinativas/metabolismo , Mutação em Linhagem Germinativa/genética , Neoplasias da Próstata/genética , Idoso , Proteína BRCA2/genética , Estudos de Coortes , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Antígeno Prostático Específico/genética , Neoplasias da Próstata/patologia
18.
Genet Res (Camb) ; 102: e6, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32772980

RESUMO

PURPOSE: To characterize the spectrum of BRCA1 and BRCA2 pathogenic germline variants in women from south-west Poland and west Ukraine affected with breast or ovarian cancer. Testing in women at high risk of breast and ovarian cancer in these regions is currently mainly limited to founder mutations. METHODS: Unrelated women affected with breast and/or ovarian cancer from Poland (n = 337) and Ukraine (n = 123) were screened by targeted sequencing. Excluded from targeted sequencing were 34 Polish women who had previously been identified as carrying a founder mutation in BRCA1. No prior testing had been conducted among the Ukrainian women. Thus, this study screened BRCA1 and BRCA2 in the germline DNA of 426 women in total. RESULTS: We identified 31 and 18 women as carriers of pathogenic/likely pathogenic (P/LP) genetic variants in BRCA1 and BRCA2, respectively. We observed five BRCA1 and eight BRCA2 P/LP variants (13/337, 3.9%) in the Polish women. Combined with the 34/337 (10.1%) founder variants identified prior to this study, the overall P/LP variant frequency in the Polish women was thus 14% (47/337). Among the Ukrainian women, 16/123 (13%) women were identified as carrying a founder mutation and 20/123 (16.3%) were found to carry non-founder P/LP variants (10 in BRCA1 and 10 in BRCA2). CONCLUSIONS: These results indicate that genetic testing in women at high risk of breast and ovarian cancer in Poland and Ukraine should not be limited to founder mutations. Extended testing will enhance risk stratification and management for these women and their families.


Assuntos
Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias da Mama/genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Neoplasias Ovarianas/genética , Neoplasias da Mama/epidemiologia , Neoplasias da Mama/patologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/patologia , Polônia/epidemiologia , Ucrânia/epidemiologia
19.
Malar J ; 19(1): 403, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33172455

RESUMO

BACKGROUND: Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS: Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS: A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION: This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.


Assuntos
Antígenos de Protozoários/genética , Proteína 1 de Superfície de Merozoito/genética , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Senegal , Adulto Jovem
20.
Malar J ; 19(1): 134, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32228566

RESUMO

BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) with artemether-lumefantrine as the first-line treatment for uncomplicated Plasmodium falciparum malaria. To date, multiple mutations associated with artemisinin delayed parasite clearance have been described in Southeast Asia in the Pfk13 gene, such as Y493H, R539T, I543T and C580Y. Even though ACT remains clinically and parasitologically efficacious in Senegal, the spread of resistance is possible as shown by the earlier emergence of resistance to chloroquine in Southeast Asia that subsequently spread to Africa. Therefore, surveillance of artemisinin resistance in malaria endemic regions is crucial and requires the implementation of sensitive tools, such as next-generation sequencing (NGS) which can detect novel mutations at low frequency. METHODS: Here, an amplicon sequencing approach was used to identify mutations in the Pfk13 gene in eighty-one P. falciparum isolates collected from three different regions of Senegal. RESULTS: In total, 10 SNPs around the propeller domain were identified; one synonymous SNP and nine non-synonymous SNPs, and two insertions. Three of these SNPs (T478T, A578S and V637I) were located in the propeller domain. A578S, is the most frequent mutation observed in Africa, but has not previously been reported in Senegal. A previous study has suggested that A578S could disrupt the function of the Pfk13 propeller region. CONCLUSION: As the genetic basis of possible artemisinin resistance may be distinct in Africa and Southeast Asia, further studies are necessary to assess the new SNPs reported in this study.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Sequenciamento de Nucleotídeos em Larga Escala , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo de Nucleotídeo Único , Senegal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA