Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Annu Rev Cell Dev Biol ; 33: 369-390, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28564553

RESUMO

Many proteins are translocated across the endoplasmic reticulum (ER) membrane in eukaryotes or the plasma membrane in prokaryotes. These proteins use hydrophobic signal sequences or transmembrane (TM) segments to trigger their translocation through the protein-conducting Sec61/SecY channel. Substrates are first directed to the channel by cytosolic targeting factors, which use hydrophobic pockets to bind diverse signal and TM sequences. Subsequently, these hydrophobic sequences insert into the channel, docking into a groove on the outside of the lateral gate of the channel, where they also interact with lipids. Structural data and biochemical experiments have elucidated how channel partners, the ribosome in cotranslational translocation, and the eukaryotic ER chaperone BiP or the prokaryotic cytosolic SecA ATPase in posttranslational translocation move polypeptides unidirectionally across the membrane. Structures of auxiliary components of the bacterial translocon, YidC and SecD/F, provide additional insight. Taken together, these recent advances result in mechanistic models of protein translocation.


Assuntos
Transporte Proteico , Animais , Humanos , Proteínas de Membrana/metabolismo , Modelos Biológicos , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas
2.
Nature ; 621(7979): 620-626, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37344598

RESUMO

Mitochondria import nearly all of their approximately 1,000-2,000 constituent proteins from the cytosol across their double-membrane envelope1-5. Genetic and biochemical studies have shown that the conserved protein translocase, termed the TIM23 complex, mediates import of presequence-containing proteins (preproteins) into the mitochondrial matrix and inner membrane. Among about ten different subunits of the TIM23 complex, the essential multipass membrane protein Tim23, together with the evolutionarily related protein Tim17, has long been postulated to form a protein-conducting channel6-11. However, the mechanism by which these subunits form a translocation path in the membrane and enable the import process remains unclear due to a lack of structural information. Here we determined the cryo-electron microscopy structure of the core TIM23 complex (heterotrimeric Tim17-Tim23-Tim44) from Saccharomyces cerevisiae. Contrary to the prevailing model, Tim23 and Tim17 themselves do not form a water-filled channel, but instead have separate, lipid-exposed concave cavities that face in opposite directions. Our structural and biochemical analyses show that the cavity of Tim17, but not Tim23, forms the protein translocation path, whereas Tim23 probably has a structural role. The results further suggest that, during translocation of substrate polypeptides, the nonessential subunit Mgr2 seals the lateral opening of the Tim17 cavity to facilitate the translocation process. We propose a new model for the TIM23-mediated protein import and sorting mechanism, a central pathway in mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Microscopia Crioeletrônica , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/química , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial/ultraestrutura , Transporte Proteico , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Mitocôndrias/química , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura
3.
Mol Cell ; 81(22): 4635-4649.e8, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34715013

RESUMO

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.


Assuntos
Poliaminas/química , ATPases Translocadoras de Prótons/química , Animais , Transporte Biológico , Catálise , Microscopia Crioeletrônica , Citosol/metabolismo , Humanos , Lipídeos/química , Lisossomos/química , Simulação de Dinâmica Molecular , Doença de Parkinson/metabolismo , Fosforilação , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo , Spodoptera
4.
Nat Chem Biol ; 19(9): 1063-1071, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37169959

RESUMO

The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Humanos , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico/fisiologia , Canais de Translocação SEC/antagonistas & inibidores , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo
5.
Nature ; 541(7638): 500-505, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28002411

RESUMO

CLC proteins transport chloride (Cl-) ions across cellular membranes to regulate muscle excitability, electrolyte movement across epithelia, and acidification of intracellular organelles. Some CLC proteins are channels that conduct Cl- ions passively, whereas others are secondary active transporters that exchange two Cl- ions for one H+. The structural basis underlying these distinctive transport mechanisms is puzzling because CLC channels and transporters are expected to share the same architecture on the basis of sequence homology. Here we determined the structure of a bovine CLC channel (CLC-K) using cryo-electron microscopy. A conserved loop in the Cl- transport pathway shows a structure markedly different from that of CLC transporters. Consequently, the cytosolic constriction for Cl- passage is widened in CLC-K such that the kinetic barrier previously postulated for Cl-/H+ transporter function would be reduced. Thus, reduction of a kinetic barrier in CLC channels enables fast flow of Cl- down its electrochemical gradient.


Assuntos
Canais de Cloreto/química , Canais de Cloreto/ultraestrutura , Microscopia Crioeletrônica , Animais , Células CHO , Bovinos , Membrana Celular/metabolismo , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Cricetulus , Citosol/metabolismo , Transporte de Íons , Cinética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Modelos Moleculares , Maleabilidade , Porosidade , Multimerização Proteica , Prótons
6.
Nature ; 531(7594): 395-399, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26950603

RESUMO

Hydrophobic signal sequences target secretory polypeptides to a protein-conducting channel formed by a heterotrimeric membrane protein complex, the prokaryotic SecY or eukaryotic Sec61 complex. How signal sequences are recognized is poorly understood, particularly because they are diverse in sequence and length. Structures of the inactive channel show that the largest subunit, SecY or Sec61α, consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces lipid. The cytoplasmic funnel is empty, while the extracellular funnel is filled with a plug domain. In bacteria, the SecY channel associates with the translating ribosome in co-translational translocation, and with the SecA ATPase in post-translational translocation. How a translocating polypeptide inserts into the channel is uncertain, as cryo-electron microscopy structures of the active channel have a relatively low resolution (~10 Å) or are of insufficient quality. Here we report a crystal structure of the active channel, assembled from SecY complex, the SecA ATPase, and a segment of a secretory protein fused into SecA. The translocating protein segment inserts into the channel as a loop, displacing the plug domain. The hydrophobic core of the signal sequence forms a helix that sits in a groove outside the lateral gate, while the following polypeptide segment intercalates into the gate. The carboxy (C)-terminal section of the polypeptide loop is located in the channel, surrounded by residues of the pore ring. Thus, during translocation, the hydrophobic segments of signal sequences, and probably bilayer-spanning domains of nascent membrane proteins, exit the lateral gate and dock at a specific site that faces the lipid phase.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Canais de Translocação SEC , Proteínas SecA
7.
Nature ; 506(7486): 102-6, 2014 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-24153188

RESUMO

Many secretory proteins are targeted by signal sequences to a protein-conducting channel, formed by prokaryotic SecY or eukaryotic Sec61 complexes, and are translocated across the membrane during their synthesis. Crystal structures of the inactive channel show that the SecY subunit of the heterotrimeric complex consists of two halves that form an hourglass-shaped pore with a constriction in the middle of the membrane and a lateral gate that faces the lipid phase. The closed channel has an empty cytoplasmic funnel and an extracellular funnel that is filled with a small helical domain, called the plug. During initiation of translocation, a ribosome-nascent chain complex binds to the SecY (or Sec61) complex, resulting in insertion of the nascent chain. However, the mechanism of channel opening during translocation is unclear. Here we have addressed this question by determining structures of inactive and active ribosome-channel complexes with cryo-electron microscopy. Non-translating ribosome-SecY channel complexes derived from Methanocaldococcus jannaschii or Escherichia coli show the channel in its closed state, and indicate that ribosome binding per se causes only minor changes. The structure of an active E. coli ribosome-channel complex demonstrates that the nascent chain opens the channel, causing mostly rigid body movements of the amino- and carboxy-terminal halves of SecY. In this early translocation intermediate, the polypeptide inserts as a loop into the SecY channel with the hydrophobic signal sequence intercalated into the open lateral gate. The nascent chain also forms a loop on the cytoplasmic surface of SecY rather than entering the channel directly.


Assuntos
Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Escherichia coli/química , Methanocaldococcus/química , Biossíntese de Proteínas , Ribossomos/diagnóstico por imagem , Ribossomos/metabolismo , Microscopia Crioeletrônica , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Methanocaldococcus/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Peptídeos/química , Peptídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Transporte Proteico , Ribossomos/química , Canais de Translocação SEC , Ultrassonografia
8.
Nature ; 473(7346): 239-42, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21562565

RESUMO

Many proteins are translocated through the SecY channel in bacteria and archaea and through the related Sec61 channel in eukaryotes. The channel has an hourglass shape with a narrow constriction approximately halfway across the membrane, formed by a pore ring of amino acids. While the cytoplasmic cavity of the channel is empty, the extracellular cavity is filled with a short helix called the plug, which moves out of the way during protein translocation. The mechanism by which the channel transports large polypeptides and yet prevents the passage of small molecules, such as ions or metabolites, has been controversial. Here, we have addressed this issue in intact Escherichia coli cells by testing the permeation of small molecules through wild-type and mutant SecY channels, which are either in the resting state or contain a defined translocating polypeptide chain. We show that in the resting state, the channel is sealed by both the pore ring and the plug domain. During translocation, the pore ring forms a 'gasket-like' seal around the polypeptide chain, preventing the permeation of small molecules. The structural conservation of the channel in all organisms indicates that this may be a universal mechanism by which the membrane barrier is maintained during protein translocation.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Peptídeos/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação , Permeabilidade , Transporte Proteico , Canais de Translocação SEC
9.
Nat Commun ; 15(1): 2182, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467638

RESUMO

Doa10 (MARCHF6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we define the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its model substrates. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel. Our study reveals how extended hydrophobic sequences at the termini of substrate proteins are recognized by Doa10 as a signal for quality control.


Assuntos
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Ubiquitina/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Retículo Endoplasmático/metabolismo
10.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260251

RESUMO

Doa10 (MARCH6 in metazoans) is a large polytopic membrane-embedded E3 ubiquitin ligase in the endoplasmic reticulum (ER) that plays an important role in quality control of cytosolic and ER proteins. Although Doa10 is highly conserved across eukaryotes, it is not understood how Doa10 recognizes its substrates. Here, we defined the substrate recognition mechanism of Doa10 by structural and functional analyses on Saccharomyces cerevisiae Doa10 and its well-defined degron Deg1. Cryo-EM analysis shows that Doa10 has unusual architecture with a large lipid-filled central cavity, and its conserved middle domain forms an additional water-filled lateral tunnel open to the cytosol. Our biochemical data and molecular dynamics simulations suggest that the entrance of the substrate's degron peptide into the lateral tunnel is required for efficient polyubiquitination. The N- and C-terminal membrane domains of Doa10 seem to form fence-like features to restrict polyubiquitination to those proteins that can access the central cavity and lateral tunnel.

11.
Artigo em Inglês | MEDLINE | ID: mdl-35940906

RESUMO

The endoplasmic reticulum (ER) is a major site for protein synthesis, folding, and maturation in eukaryotic cells, responsible for production of secretory proteins and most integral membrane proteins. The universally conserved protein-conducting channel Sec61 complex mediates core steps in these processes by translocating hydrophilic polypeptide segments of client proteins across the ER membrane and integrating hydrophobic transmembrane segments into the membrane. The Sec61 complex associates with several other molecular machines and enzymes to enable substrate engagement with the channel and coordination of protein translocation with translation, protein folding, and/or post-translational modifications. Recent cryo-electron microscopy and functional studies of these translocon complexes have greatly advanced our mechanistic understanding of Sec61-dependent protein biogenesis at the ER. Here, we will review the current models for how the Sec61 channel performs its functions in coordination with partner complexes.


Assuntos
Retículo Endoplasmático , Proteínas de Membrana , Humanos , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Transporte Proteico
12.
Curr Opin Struct Biol ; 79: 102531, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36724561

RESUMO

P5A- and P5B- ATPases, or collectively P5-ATPases, are eukaryotic-specific ATP-dependent transporters that are important for the function of the endoplasmic reticulum (ER) and endo-/lysosomes. However, their substrate specificities had remained enigmatic for many years. Recent cryo-electron microscopy (cryo-EM) and biochemical studies of P5-ATPases have revealed their substrate specificities and transport mechanisms, which were found to be markedly different from other members of the P-type ATPase superfamily. The P5A-ATPase extracts mistargeted or mis-inserted transmembrane helices from the ER membrane for protein quality control, while the P5B-ATPases mediate export of polyamines from late endo-/lysosomes into the cytosol. In this review, we discuss the mechanisms of their substrate recognition and transport based on the cryo-EM structures of the yeast and human P5-ATPases. We highlight how structural diversification of the transmembrane domain has enabled the P5-ATPase subfamily to adapt for transport of atypical substrates.


Assuntos
Adenosina Trifosfatases , Retículo Endoplasmático , Humanos , Adenosina Trifosfatases/química , Especificidade por Substrato , Microscopia Crioeletrônica , Retículo Endoplasmático/metabolismo , Domínios Proteicos , Saccharomyces cerevisiae/metabolismo
13.
Science ; 377(6612): 1290-1298, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36007018

RESUMO

Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.


Assuntos
Colesterol , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Nat Struct Mol Biol ; 28(2): 162-172, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33398175

RESUMO

Many proteins are transported into the endoplasmic reticulum by the universally conserved Sec61 channel. Post-translational transport requires two additional proteins, Sec62 and Sec63, but their functions are poorly defined. In the present study, we determined cryo-electron microscopy (cryo-EM) structures of several variants of Sec61-Sec62-Sec63 complexes from Saccharomyces cerevisiae and Thermomyces lanuginosus and show that Sec62 and Sec63 induce opening of the Sec61 channel. Without Sec62, the translocation pore of Sec61 remains closed by the plug domain, rendering the channel inactive. We further show that the lateral gate of Sec61 must first be partially opened by interactions between Sec61 and Sec63 in cytosolic and luminal domains, a simultaneous disruption of which completely closes the channel. The structures and molecular dynamics simulations suggest that Sec62 may also prevent lipids from invading the channel through the open lateral gate. Our study shows how Sec63 and Sec62 work together in a hierarchical manner to activate Sec61 for post-translational protein translocation.


Assuntos
Eurotiales/metabolismo , Proteínas de Choque Térmico , Proteínas de Membrana Transportadoras , Modelos Moleculares , Canais de Translocação SEC , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
J Biol Chem ; 284(48): 33475-84, 2009 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-19801685

RESUMO

HslVU is a bacterial ATP-dependent protease distantly related to eukaryotic proteasomes consisting of hexameric HslU ATPase and dodecameric HslV protease. As a homolog of the 20 S proteasome beta-subunits, HslV also uses the N-terminal threonine as the active site residue. However, unlike the proteasome that has only 6 active sites among the 14 beta-subunits, HslV has 12 active sites that could potentially contribute to proteolytic activity. Here, by using a series of HslV dodecamers containing different numbers of active sites, we demonstrate that like the proteasome, HslV with only approximately 6 active sites is sufficient to support full catalytic activity. However, a further reduction of the number of active sites leads to a proportional decrease in activity. Using proteasome inhibitors, we also demonstrate that substrate-mediated stabilization of the HslV-HslU interaction remains unchanged until the number of the active sites is decreased to approximately 6 but is gradually compromised upon further reduction. These results with a mathematical model suggest HslVU utilizes no more than 6 active sites at any given time, presumably because of the action of HslU. These results also suggest that each ATP-bound HslU subunit activates one HslV subunit and that substrate bound to the HslV active site stimulates the HslU ATPase activity by stabilizing the HslV-HslU interaction. We propose this mechanism plays an important role in supporting complete degradation of substrates while preventing wasteful ATP hydrolysis in the resting state by controlling the interaction between HslV and HslU through the catalytic engagement of the proteolytic active sites.


Assuntos
Trifosfato de Adenosina/metabolismo , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/metabolismo , Treonina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Alanina/genética , Alanina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Catálise , Eletroforese em Gel de Poliacrilamida , Endopeptidase Clp/genética , Ensaios Enzimáticos , Proteínas de Escherichia coli/genética , Hidrólise , Cinética , Modelos Biológicos , Mutação , Peptídeos/metabolismo , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Espectrometria de Fluorescência , Especificidade por Substrato , Treonina/genética
16.
Structure ; 16(7): 1126-37, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18611385

RESUMO

During cotranslational protein translocation, the ribosome associates with a membrane channel, formed by the Sec61 complex, and recruits the translocon-associated protein complex (TRAP). Here we report the structure of a ribosome-channel complex from mammalian endoplasmic reticulum in which the channel has been visualized at 11 A resolution. In this complex, single copies of Sec61 and TRAP associate with a nontranslating ribosome and this stoichiometry was verified by quantitative mass spectrometry. A bilayer-like density surrounds the channel and can be attributed to lipid and detergent. The crystal structure of an archaeal homolog of the Sec61 complex was then docked into the map. In this model, two cytoplasmic loops of Sec61 may interact with RNA helices H6, H7, and H50, while the central pore is located below the ribosome tunnel exit. Hence, this copy of Sec61 is positioned to capture and translocate the nascent chain. Finally, we show that mammalian and bacterial ribosome-channel complexes have similar architectures.


Assuntos
Proteínas de Ligação ao Cálcio/química , Glicoproteínas de Membrana/química , Proteínas de Membrana/química , Receptores Citoplasmáticos e Nucleares/química , Receptores de Peptídeos/química , Ribossomos/química , Animais , Proteínas Arqueais/química , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/ultraestrutura , Cães , Retículo Endoplasmático/metabolismo , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/ultraestrutura , Proteínas de Membrana/análise , Modelos Moleculares , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/análise , Receptores Citoplasmáticos e Nucleares/ultraestrutura , Receptores de Peptídeos/análise , Receptores de Peptídeos/ultraestrutura , Subunidades Ribossômicas Maiores de Eucariotos/química , Ribossomos/ultraestrutura , Canais de Translocação SEC , Translocação Genética
17.
Science ; 369(6511)2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32973005

RESUMO

Organelle identity depends on protein composition. How mistargeted proteins are selectively recognized and removed from organelles is incompletely understood. Here, we found that the orphan P5A-adenosine triphosphatase (ATPase) transporter ATP13A1 (Spf1 in yeast) directly interacted with the transmembrane segment (TM) of mitochondrial tail-anchored proteins. P5A-ATPase activity mediated the extraction of mistargeted proteins from the endoplasmic reticulum (ER). Cryo-electron microscopy structures of Saccharomyces cerevisiae Spf1 revealed a large, membrane-accessible substrate-binding pocket that alternately faced the ER lumen and cytosol and an endogenous substrate resembling an α-helical TM. Our results indicate that the P5A-ATPase could dislocate misinserted hydrophobic helices flanked by short basic segments from the ER. TM dislocation by the P5A-ATPase establishes an additional class of P-type ATPase substrates and may correct mistakes in protein targeting or topogenesis.


Assuntos
Transportadores de Cassetes de Ligação de ATP/química , Retículo Endoplasmático/enzimologia , Membranas Mitocondriais/enzimologia , ATPases do Tipo-P/química , Proteínas de Saccharomyces cerevisiae/química , Microscopia Crioeletrônica , Células HeLa , Humanos , ATPases do Tipo-P/genética , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Saccharomyces cerevisiae/enzimologia , Alinhamento de Sequência
18.
Nat Struct Mol Biol ; 26(12): 1158-1166, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740857

RESUMO

Nearly all mitochondrial proteins are encoded by the nuclear genome and imported into mitochondria after synthesis on cytosolic ribosomes. These precursor proteins are translocated into mitochondria by the TOM complex, a protein-conducting channel in the mitochondrial outer membrane. We have determined high-resolution cryo-EM structures of the core TOM complex from Saccharomyces cerevisiae in dimeric and tetrameric forms. Dimeric TOM consists of two copies each of five proteins arranged in two-fold symmetry: pore-forming ß-barrel protein Tom40 and four auxiliary α-helical transmembrane proteins. The pore of each Tom40 has an overall negatively charged inner surface attributed to multiple functionally important acidic patches. The tetrameric complex is essentially a dimer of dimeric TOM, which may be capable of forming higher-order oligomers. Our study reveals the detailed molecular organization of the TOM complex and provides new insights about the mechanism of protein translocation into mitochondria.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Microscopia Crioeletrônica , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/ultraestrutura , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestrutura
19.
Science ; 363(6422): 84-87, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30545845

RESUMO

The Sec61 protein-conducting channel mediates transport of many proteins, such as secretory proteins, across the endoplasmic reticulum (ER) membrane during or after translation. Posttranslational transport is enabled by two additional membrane proteins associated with the channel, Sec63 and Sec62, but its mechanism is poorly understood. We determined a structure of the Sec complex (Sec61-Sec63-Sec71-Sec72) from Saccharomyces cerevisiae by cryo-electron microscopy (cryo-EM). The structure shows that Sec63 tightly associates with Sec61 through interactions in cytosolic, transmembrane, and ER-luminal domains, prying open Sec61's lateral gate and translocation pore and thus activating the channel for substrate engagement. Furthermore, Sec63 optimally positions binding sites for cytosolic and luminal chaperones in the complex to enable efficient polypeptide translocation. Our study provides mechanistic insights into eukaryotic posttranslational protein translocation.


Assuntos
Retículo Endoplasmático/química , Proteínas de Choque Térmico/química , Proteínas de Membrana Transportadoras/química , Canais de Translocação SEC/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Microscopia Crioeletrônica , Modelos Moleculares , Estrutura Quaternária de Proteína , Transporte Proteico , Ribossomos/química
20.
Nat Commun ; 10(1): 2872, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253804

RESUMO

The Sec61/SecY channel allows the translocation of many proteins across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. In bacteria, most secretory proteins are transported post-translationally through the SecY channel by the SecA ATPase. How a polypeptide is moved through the SecA-SecY complex is poorly understood, as structural information is lacking. Here, we report an electron cryo-microscopy (cryo-EM) structure of a translocating SecA-SecY complex in a lipid environment. The translocating polypeptide chain can be traced through both SecA and SecY. In the captured transition state of ATP hydrolysis, SecA's two-helix finger is close to the polypeptide, while SecA's clamp interacts with the polypeptide in a sequence-independent manner by inducing a short ß-strand. Taking into account previous biochemical and biophysical data, our structure is consistent with a model in which the two-helix finger and clamp cooperate during the ATPase cycle to move a polypeptide through the channel.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Canais de Translocação SEC/metabolismo , Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Cristalização , Escherichia coli , Geobacillus/metabolismo , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC/genética , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA