Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytother Res ; 37(2): 452-463, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36122906

RESUMO

To target benign prostatic hyperplasia (BPH) as a common urinary disease in old men, in the current study, the antiproliferative and apoptotic mechanism of SH-PRO, a mixture of Angelica gigas and Astragalus membranaceus (2:1), was evaluated in BPH-1 cells and rats with testosterone-induced BPH. Herein, SH-PRO significantly reduced the viability of BPH-1 cells and dihydrotestosterone (DHT)-treated RWPE-1 cells. Also, SH-PRO increased the sub-G1 population in BPH-1 cells and consistently attenuated the expression of pro-PARP, pro-caspase 3, Bcl2, FOXO3a, androgen receptor (AR), and prostate-specific antigen (PSA) in BPH-1 cells and DHT-treated RWPE-1 cells. Of note, SH-PRO generated reactive oxygen species (ROS) in BPH-1 cells, while ROS inhibitor N-acetyl-l-cysteine (NAC) disturbed the ability of SH-PRO to reduce the expression of pro-PARP, FOXO3a, catalase, SOD, and increase sub-G1 population in BPH-1 cells. Furthermore, oral treatment of SH-PRO significantly abrogated the weight of the prostate in testosterone-treated rats compared to BPH control with the reduced expression of AR, PSA, and DHT and lower plasma levels of DTH, bFGF, and EGF with no toxicity. Overall, these findings highlight the antiproliferative and apoptotic potential of SH-PRO via ROS-mediated activation of PARP and caspase 3 and inhibition of FOXO3a/AR/PSA signaling as a potent anti-BPH candidate.


Assuntos
Hiperplasia Prostática , Masculino , Humanos , Ratos , Animais , Hiperplasia Prostática/tratamento farmacológico , Hiperplasia Prostática/induzido quimicamente , Antígeno Prostático Específico , Espécies Reativas de Oxigênio/efeitos adversos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Receptores Androgênicos/metabolismo , Caspases , Caspase 3 , Extratos Vegetais/uso terapêutico , Testosterona/efeitos adversos
2.
J Med Food ; 26(12): 902-910, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38010847

RESUMO

Our study aimed to investigate whether unripe pear extract (UP) could provide protection against UVB-induced damage to both mouse skin and keratinocytes. We observed that UVB exposure, a common contributor to skin photoaging, led to wrinkle formation, skin dryness, and inflammation in mice. Nevertheless, these effects were mitigated in the groups of UVB-irradiated mice treated with UP. Moreover, UP treatment at 400 µg/mL increased the antioxidant enzyme activities (sodium dodecyl sulfate, 2.22-fold higher; catalase, 2.91-fold higher; GPx, 1.96-fold higher) along with sphingomyelin (1.58-fold higher) and hyaluronic acid (1.31-fold higher) levels in UVB-irradiated keratinocytes. In the keratinocytes irradiated with UVB, UP 400 µg/mL resulted in reduced cytokine production (TNF-α, 33.2%; IL-1ß, 45.3%; IL-6, 33.4%) and the expression of inflammatory pathway-related proteins. The findings indicate that UP has a direct protective effect on UVB-irradiated keratinocytes and is also able to shield against photoaging induced by UVB. Hence, it is suggested that UP could contribute to improved skin health by averting skin photoaging.


Assuntos
Pyrus , Envelhecimento da Pele , Animais , Camundongos , Camundongos Pelados , Raios Ultravioleta/efeitos adversos , Queratinócitos , Pele , Antioxidantes/farmacologia
3.
Nutrients ; 15(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36678340

RESUMO

We studied the activities of Siraitia grosvenorii extracts (SGE) on airway inflammation in a mouse model of chronic obstructive pulmonary disease (COPD) stimulated by cigarette smoke extract (CSE) and lipopolysaccharide (LPS), as well as in LPS-treated human bronchial epithelial cell line (BEAS-2B). SGE improved the viability of LPS-incubated BEAS-2B cells and inhibited the expression and production of inflammatory cytokines. SGE also attenuated the mitogen-activated protein kinase (MAPK)-nuclear factor-kappa B (NF-κB) signaling activated by LPS stimulation in BEAS-2B cells. In mice stimulated by CSE and LPS, we observed the infiltration of immune cells into the airway after COPD induction. SGE reduced the number of activated T cells, B cells, and neutrophils in bronchoalveolar fluid (BALF), lung tissue, mesenteric lymph node, and peripheral blood mononuclear cells, as well as inhibited infiltration into organs and mucus production. The secretion of cytokines in BALF and the expression level of pro-inflammatory cytokines, mucin 5AC, Transient receptor potential vanilloid 1, and Transient receptor potential ankyrin 1 in lung tissue were alleviated by SGE. In addition, to investigate the activity of SGE on expectoration, we evaluated phenol red secretions in the trachea of mice. SGE administration showed the effect of improving expectoration through an increase in phenol red secretion. Consequently, SGE attenuates the airway inflammatory response in CSE/LPS-stimulated COPD. These findings indicate that SGE may be a potential herbal candidate for the therapy of COPD.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , Camundongos , Humanos , Animais , Lipopolissacarídeos/farmacologia , Fumar Cigarros/efeitos adversos , Modelos Animais de Doenças , Leucócitos Mononucleares/metabolismo , Fenolsulfonaftaleína/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Citocinas/metabolismo , Nicotiana
4.
Nutrients ; 15(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836429

RESUMO

Exposure to particulate matter (PM) causes considerable breathing-related health risks. Siraitia grosvenorii fruit is a traditional remedial plant used in Korea and China to treat respiratory diseases. Our recently published study showed that S. grosvenorii extract (SGE) ameliorated airway inflammation in lipopolysaccharide- and cigarette-smoke-induced chronic obstructive pulmonary disease in mice. Thus, we aimed to assess the inhibitory effects of SGE on airway inflammation in mice exposed to a fine dust mixture of PM10 (PM diameter < 10 mm) and diesel exhaust particles (DEPs) known as PM10D. The mice (BALB/c) were treated with PM10D via intranasal injection three times over a period of 12 days, and SGE 70% ethanolic extract (50 or 100 mg/kg) was orally administered daily for 12 days. SGE attenuated neutrophil accumulation and the number of immune B and T cells from the lung tissue and bronchoalveolar lavage fluid (BALF) of the PM10D-exposed mice. SGE reduced the secretion of cytokines and chemokines, including interleukin (IL)-1α, tumor necrosis factor (TNF)-α, IL-17, C-X-C motif chemokine ligand (CXCL)1, and macrophage inflammatory protein (MIP)-2 in the BALF. Airway inflammation, infiltration of inflammatory cells, and collagen fibrosis in the lung after PM10D exposure were investigated via histopathological analysis, and SGE treatment ameliorated these symptoms. SGE decreased the mRNA expression of mucin 5AC (MUC5AC), CXCL1, TNF-α, MIP-2, and transient receptor potential ion channels in the lung tissues. Furthermore, SGE ameliorated the activation of mitogen-activated protein kinase (MAPK)/nuclear factor-kappa B (NF-κB) signaling by PM10D in the lungs. We conclude that SGE attenuated PM10D-induced neutrophilic airway inflammation by inhibiting MAPK/NF-κB activation. These results show that SGE may be a candidate for the treatment of inflammatory respiratory diseases.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Emissões de Veículos , Camundongos , Animais , Emissões de Veículos/toxicidade , Material Particulado/toxicidade , NF-kappa B/metabolismo , Pulmão/patologia , Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Líquido da Lavagem Broncoalveolar , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo
5.
J Med Food ; 24(10): 1058-1067, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34591699

RESUMO

We evaluated the effect of artichoke leaf extract (ALE) on the livers of mice with non-alcoholic fatty liver disease (NAFLD) induced by high-fat/high-fructose diet and H2O2-treated HepG2 cells, as well as the mechanism underlying its hepatoprotective effects. Supplementation with ALE suppressed the NAFLD-induced increases in serum lipids, bilirubin, gamma-glutamyl transferase, aspartate transaminase (AST), and alanine aminotransferase. In addition, we observed that supplementation with ALE attenuated the increases in antioxidant enzyme activity, mRNA levels of proinflammatory cytokines, and apoptosis signaling pathways caused by a high-fat/high-fructose diet. We found that ALE treatment suppressed inflammation and apoptosis caused by H2O2-induced oxidative stress in HepG2 cells. These findings suggest that ALE supplementation directly suppresses inflammation and apoptosis in hepatocytes during the development of NAFLD. Based on these results, we suggest that supplementation with ALE may be useful for preventing the progression of liver diseases, including hepatic steatosis and non-alcoholic steatohepatitis.


Assuntos
Cynara scolymus , Hepatopatia Gordurosa não Alcoólica , Animais , Apoptose , Dieta Hiperlipídica/efeitos adversos , Hepatócitos , Peróxido de Hidrogênio , Inflamação/tratamento farmacológico , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/genética , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA