Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139201

RESUMO

Chronic rhinosinusitis (CRS) is an inflammation of the nasal and paranasal sinus mucosa, and eosinophilic CRS (eCRS) is a subtype characterized by significant eosinophil infiltration and immune response by T-helper-2 cells. The pathogenesis of eCRS is heterogeneous and involves various environmental and host factors. Proteases from external sources, such as mites, fungi, and bacteria, have been implicated in inducing type 2 inflammatory reactions. The balance between these proteases and endogenous protease inhibitors (EPIs) is considered important, and their imbalance can potentially lead to type 2 inflammatory reactions, such as eCRS. In this review, we discuss various mechanisms by which exogenous proteases influence eCRS and highlight the emerging role of endogenous protease inhibitors in eCRS pathogenesis.


Assuntos
Hipersensibilidade , Rinite , Rinossinusite , Sinusite , Humanos , Rinite/patologia , Peptídeo Hidrolases , Sinusite/patologia , Doença Crônica , Endopeptidases , Inibidores de Proteases , Hipersensibilidade/patologia , Eosinófilos
2.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328422

RESUMO

Chronic rhinosinusitis (CRS) pathogenesis is closely related to tissue remodeling, including epithelial-mesenchymal transition (EMT). Epigenetic mechanisms play key roles in EMT. DNA methylation, mediated by DNA methyltransferases (DNMTs), is an epigenetic marker that is critical to EMT. The goal of this study was to determine whether DNMTs were involved in TGF-ß1-induced EMT and elucidate the underlying mechanisms in nasal epithelial cells and air-liquid interface cultures. Global DNA methylation and DNMT activity were quantified. DNMT expression was measured using real-time PCR (qRT-PCR) in human CRS tissues. mRNA and protein levels of DNMTs, E-cadherin, vimentin, α-SMA, and fibronectin were determined using RT-PCR and Western blotting, respectively. DNMT1, DNMT3A, and DNMT3B gene expression were knocked down using siRNA transfection. MAPK phosphorylation and EMT-related transcription factor levels were determined using Western blotting. Signaling pathways were analyzed using specific inhibitors of MAPK. We demonstrated these data in primary nasal epithelial cells and air-liquid interface cultures. Global DNA methylation, DNMT activity, and DNMT expression increased in CRS tissues. DNMT expression was positively correlated with Lund-McKay CT scores. TGF-ß1 dose-dependently induced DNMT expression. Further, 5-Aza inhibited TGF-ß1-induced DNMT, Snail, and Slug expression related to EMT, as well as p38 and JNK phosphorylation in A549 cells and TGF-ß1-induced DNMT expression and EMT in primary nasal epithelial cells and air-liquid interface cultures. TGF-ß1-induced DNMT expression leads to DNA methylation and EMT via p38, JNK, Snail, and Slug signaling pathways. Inhibition of DNMT suppressed the EMT process and therefore is potentially a CRS therapeutic strategy.


Assuntos
Transição Epitelial-Mesenquimal , Sinusite , Células A549 , Caderinas/metabolismo , Metilação de DNA , Células Epiteliais/metabolismo , Humanos , Sinusite/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
3.
Int J Mol Sci ; 22(21)2021 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-34768968

RESUMO

Tissue remodeling contributes to ongoing inflammation and refractoriness of chronic rhinosinusitis (CRS). During this process, epithelial-mesenchymal transition (EMT) plays an important role in dysregulated remodeling and both microRNA (miR)-29b and heat shock protein 47 (HSP47) may be engaged in the pathophysiology of CRS. This study aimed to determine the role of miR-29b and HSP47 in modulating transforming growth factor (TGF)-ß1-induced EMT and migration in airway epithelial cells. Expression levels of miR-29b, HSP47, E-cadherin, α-smooth muscle actin (α-SMA), vimentin and fibronectin were assessed through real-time PCR, Western blotting, and immunofluorescence staining. Small interfering RNA (siRNA) targeted against miR-29b and HSP47 were transfected to regulate the expression of EMT-related markers. Cell migration was evaluated with wound scratch and transwell migration assay. miR-29b mimic significantly inhibited the expression of HSP47 and TGF-ß1-induced EMT-related markers in A549 cells. However, the miR-29b inhibitor more greatly induced the expression of them. HSP47 knockout suppressed TGF-ß1-induced EMT marker levels. Functional studies indicated that TGF-ß1-induced EMT was regulated by miR-29b and HSP47 in A549 cells. These findings were further verified in primary nasal epithelial cells. miR-29b modulated TGF-ß1-induced EMT-related markers and migration via HSP47 expression modulation in A549 and primary nasal epithelial cells. These results suggested the importance of miR-29b and HSP47 in pathologic tissue remodeling progression in CRS.


Assuntos
Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , Proteínas de Choque Térmico HSP47/antagonistas & inibidores , Proteínas de Choque Térmico HSP47/genética , Fator de Crescimento Transformador beta1/metabolismo , Células A549 , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Movimento Celular/fisiologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Rinite/genética , Rinite/metabolismo , Sinusite/genética , Sinusite/metabolismo , Sinusite/patologia , Fator de Crescimento Transformador beta1/administração & dosagem , Fator de Crescimento Transformador beta1/genética
4.
J Neurosci ; 37(16): 4370-4380, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28283562

RESUMO

Amotivation is a common phenotype of major depressive disorder and schizophrenia, which are clinically distinct disorders. Effective treatment targets and strategies can be discovered by examining the dopaminergic reward network function underlying amotivation between these disorders. We conducted an fMRI study in healthy human participants and medicated patients with depression and schizophrenia using an effort-based reinforcement task. We examined regional activations related to reward type (positive and negative reinforcement), effort level, and their composite value, as well as resting-state functional connectivities within the meso-striatal-prefrontal pathway. We found that integrated reward and effort values of low effort-positive reinforcement and high effort-negative reinforcement were behaviorally anticipated and represented in the putamen and medial orbitofrontal cortex activities. Patients with schizophrenia and depression did not show anticipation-related and work-related reaction time reductions, respectively. Greater amotivation severity correlated with smaller work-related putamen activity changes according to reward type in schizophrenia and effort level in depression. Patients with schizophrenia showed feedback-related putamen hyperactivity of low effort compared with healthy controls and depressed patients. The strength of medial orbitofrontal-striatal functional connectivity predicted work-related reaction time reduction of high effort negative reinforcement in healthy controls and amotivation severity in both patients with schizophrenia and those with depression. Patients with depression showed deficient medial orbitofrontal-striatal functional connectivity compared with healthy controls and patients with schizophrenia. These results indicate that amotivation in depression and schizophrenia involves different pathophysiology in the prefrontal-striatal circuitry.SIGNIFICANCE STATEMENT Amotivation is present in both depression and schizophrenia. However, treatment involves the use of drugs that enhance serotonin activity in depression and inhibit serotonin and dopamine activity in schizophrenia. Understanding how motivation processed in the mesocorticolimbic and nigostriatal pathways is affected in depression and schizophrenia is important in discovering treatment targets and strategies for amotivation. To our knowledge, this is the first study to compare patients with depression and schizophrenia in a common functional construct. By using an effort-based reinforcement task and examining resting-state functional connectivity in the dopaminergic network, we propose that difference in striato-orbitofrontal dysfunction in effort-based reinforcement between depression and schizophrenia may be related to differences in the extent of functional dysconnectivity in the dopaminergic pathway.


Assuntos
Conectoma , Depressão/fisiopatologia , Motivação , Recompensa , Esquizofrenia/fisiopatologia , Adulto , Apatia , Estudos de Casos e Controles , Corpo Estriado/fisiologia , Corpo Estriado/fisiopatologia , Depressão/tratamento farmacológico , Retroalimentação Fisiológica , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/fisiopatologia , Putamen/fisiologia , Putamen/fisiopatologia , Tempo de Reação , Esquizofrenia/tratamento farmacológico
5.
Mediators Inflamm ; 2017: 8123281, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804222

RESUMO

Epithelial-mesenchymal transition (EMT) is a biological process that allows epithelial cells to assume a mesenchymal cell phenotype. EMT is considered as a therapeutic target for several persistent inflammatory airway diseases related to tissue remodeling. Herein, we investigated the role of endoplasmic reticulum (ER) stress and c-Src in TGF-ß1-induced EMT. A549 cells, primary nasal epithelial cells (PNECs), and inferior nasal turbinate organ cultures were exposed to 4-phenylbutylic acid (4PBA) or PP2 and then stimulated with TGF-ß1. We found that E-cadherin, vimentin, fibronectin, and α-SMA expression was increased in nasal polyps compared to inferior turbinates. TGF-ß1 increased the expression of EMT markers such as E-cadherin, fibronectin, vimentin, and α-SMA and ER stress markers (XBP-1s and GRP78), an effect that was blocked by PBA or PP2 treatment. 4-PBA and PP2 also blocked the effect of TGF-ß1 on migration of A549 cells and suppressed TGF-ß1-induced expression of EMT markers in PNECs and organ cultures of inferior turbinate. In conclusion, we demonstrated that 4PBA inhibits TGF-ß1-induced EMT via the c-Src pathway in A549 cells, PNECs, and inferior turbinate organ cultures. These results suggest an important role for ER stress and a diverse role for TGF-ß1 in upper airway chronic inflammatory disease such as CRS.


Assuntos
Estresse do Retículo Endoplasmático/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Genes src/fisiologia , Fator de Crescimento Transformador beta1/farmacologia , Células A549 , Movimento Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Genes src/genética , Humanos , Pólipos Nasais/metabolismo , Técnicas de Cultura de Órgãos , Transdução de Sinais/efeitos dos fármacos
6.
Eur Arch Otorhinolaryngol ; 274(10): 3643-3649, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28707086

RESUMO

Adhesion is a major complication of endoscopic sinus surgery that may lead to recurrence of chronic rhinosinusitis, necessitating revision surgery. The purpose of this study was to evaluate the effect of hyaluronic acid and hydroxyethyl starch (HA-HES) relative to hyaluronic acid and carboxymethylcellulose (HA-CMC) with regard to anti-adhesion effect. In this multi-center, prospective, single-blind, randomized controlled study, 77 consecutive patients who underwent bilateral endoscopic sinus surgery were enrolled between March 2014 and March 2015. HA-HES and HA-CMC were applied to randomly assigned ethmoidectomized cavities after the removal of middle meatal packing. At the 1st, 2nd and 4th weeks after surgery, the presence and grades of adhesion, edema, and infection were, respectively, examined via endoscopy by a blinded assessor. The incidence and grades of adhesion at the 2-week follow-up were significantly less in the HA-CMC group than in the HA-HES group (p < 0.05). However, with the exception of week 2, there were no significant differences in the incidence or grades of adhesion, edema, and infection between the two groups. When the primary endpoint-the presence of adhesion at the 4-week follow-up-was compared between two groups, the incidence of adhesion in HA-HES group at the 4-week follow-up was 32% and in HA-CMC was 41.3%, indicating that HA-HES was not inferior to HA-CMC in terms of anti-adhesive effect. No severe adverse reactions were noted during the study period. In conclusion, HA-HES is a safe substitutional anti-adhesion agent that has equivalent effect as HA-CMC after endoscopic sinus surgery.


Assuntos
Endoscopia/efeitos adversos , Ácido Hialurônico/administração & dosagem , Sinusite/cirurgia , Amido/administração & dosagem , Aderências Teciduais/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Adulto , Carboximetilcelulose Sódica , Endoscopia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Seios Paranasais/patologia , Seios Paranasais/cirurgia , Estudos Prospectivos , Recidiva , Método Simples-Cego , Sinusite/diagnóstico , Resultado do Tratamento
7.
Int Arch Allergy Immunol ; 171(3-4): 209-216, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28049186

RESUMO

BACKGROUND: Diesel exhaust particles (DEPs), the major contributors to air pollution, induce inflammatory responses in the nasal epithelium. Overproduction of airway mucins is an important pathogenic finding in inflammatory airway diseases. OBJECTIVE: The aims of the present study were to determine the effect of DEPs on the expression of the mucin gene MUC4 and to investigate the underlying mechanism of DEP-induced MUC4 expression in NCI-H292 cells and primary nasal epithelial cells (PNECs). METHODS: NCI-H292 cells were stimulated for 24 h with DEPs. Messenger RNA (mRNA) and protein expression of MUC4 was determined by real-time reverse transcription (RT) polymerase chain reaction (PCR) and Western blotting. NCI-H292 cells were exposed to 3 mitogen-activated protein kinase inhibitors (U0126, SB203580, and SP600125) and a CREB (cAMP response element-binding protein) inhibitor prior to stimulation with DEPs, and MUC4 expression was examined by RT-PCR and Western blotting. PNECs were pretreated with a p38 inhibitor and CREB inhibitor prior to stimulation with DEPs, and MUC4 expression was then determined by RT-PCR and/or Western blotting. RESULTS: DEPs significantly increased the expression of MUC4 mRNA and protein. MUC4 mRNA and protein expression was inhibited by pretreatment with p38 and CREB inhibitors in NCI-H292 stimulated with DEPs. p38 and CREB inhibitors also blocked the expression of MUC4 mRNA and protein in DEP-stimulated PNECs. CONCLUSIONS: We demonstrated that DEPs stimulated the expression of MUC4 via the p38/CREB pathway in NCI-H292 cells and PNECs. The results of the present study pave the way for further studies on the role of MUC4 in DEP-induced hypersecretion in airway epithelium.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Mucina-4/genética , Mucosa Nasal/metabolismo , Material Particulado/efeitos adversos , Transdução de Sinais , Emissões de Veículos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Células Epiteliais , Expressão Gênica , Humanos , Mucina-4/metabolismo , Emissões de Veículos/toxicidade
8.
Phytother Res ; 28(1): 98-103, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23512732

RESUMO

Nasal polyps are chronic inflammatory conditions characterized by myofibroblast differentiation and extracelluar matrix accumulation. The major catechin from green tea is (-)-epigallocatechin-3-gallate (EGCG), which has garnered attention for its potential to prevent oxidative stress-related diseases. The purpose of this study was twofold: (i) to determine the effect of EGCG on fibroblast differentiation into myofibroblasts and extracellular matrix accumulation in transforming growth factor (TGF)-ß1-induced nasal polyp-derived fibroblasts (NPDFs) and (ii) to determine if the antioxidative effect of EGCG on reactive oxygen species (ROS) production in TGF-ß1-induced NPDFs is involved in the aforementioned processes. TGF-ß1-induced NPDFs were treated with or without EGCG. α-smooth muscle actin (α-SMA) and collagen type I mRNA were analyzed by reverse transcription-polymerase chain reaction. α-SMA protein was also detected using immunofluorescent staining. The amount of total soluble collagen was analyzed by Sircol collagen assay. ROS activity was measured by the nitroblue tetrazolium reduction assay and visualized by fluorescent microscopy. EGCG significantly inhibited expressions of α-SMA and collagen type I mRNA and reduced α-SMA and collagen protein levels at concentrations of 10-20 µg/mL. EGCG also inhibited TGF-ß1-induced ROS production at the same concentrations. These results suggest the possibility that EGCG may be effective at inhibiting the development of nasal polyps through an anti-oxidant effect.


Assuntos
Catequina/análogos & derivados , Colágeno Tipo I/biossíntese , Fibroblastos/efeitos dos fármacos , Pólipos Nasais/patologia , Actinas/metabolismo , Adulto , Antioxidantes/metabolismo , Catequina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Matriz Extracelular/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Miofibroblastos/citologia , Pólipos Nasais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
9.
Biotechnol Biotechnol Equip ; 28(4): 681-688, 2014 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-26019554

RESUMO

Bifidobacteria are considered one of the most beneficial probiotics and have been widely studied for their effects against specific pathogens. The present study investigated the antiviral activity of probiotics isolated from Koreans against Coxsackievirus B3 (CVB3). The effect of probiotic isolates against CVB3 was measured by the plaque assay and cellular toxicity of bifidobacteria in HeLa cells was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Among 13 probiotic isolates, 3 Bifidobacterium adolescentis, 2 Bifidobacterium longum and 1 Bifidobacterium pseudocatenulatum had an antiviral effect against CVB3, while the others did not show such effect. B. adolescentis SPM1605 showed the greatest inhibitory properties against CVB3. When the threshold cycle (CT) values for the treated B. adolescentis SPM1605 samples were compared to the results for the non-treated samples, it was shown that the amplified viral sequences from the CVB3 had their copy number lowered by B. adolescentis SPM1605. Moreover, the gene expression in infected HeLa cells was also inhibited by 50%. The results suggest that B. adolescentis SPM1605 suppresses CVB3 and could be used as an alternative therapy against infectious diseases caused by coxsackieviruses.

10.
Viruses ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38932148

RESUMO

The devastating effects of COVID-19 have highlighted the importance of prophylactic and therapeutic strategies to combat respiratory diseases. Stimulator of interferon gene (STING) is an essential component of the host defense mechanisms against respiratory viral infections. Although the role of the cGAS/STING signaling axis in the innate immune response to DNA viruses has been thoroughly characterized, mounting evidence shows that it also plays a key role in the prevention of RNA virus infections. In this study, we investigated the role of STING activation during Influenza virus (IFV) infection. In both mouse bone marrow-derived macrophages and monocytic cell line THP-1 differentiated with PMA, we found that dimeric amidobenzimidazole (diABZI), a STING agonist, had substantial anti-IFV activity against multiple strains of IFV, including A/H1N1, A/H3N2, B/Yamagata, and B/Victoria. On the other hand, a pharmacological antagonist of STING (H-151) or the loss of STING in human macrophages leads to enhanced viral replication but suppressed IFN expression. Furthermore, diABZI was antiviral against IFV in primary air-liquid interface cultures of nasal epithelial cells. Our data suggest that STING agonists may serve as promising therapeutic antiviral agents to combat IFV.


Assuntos
Antivirais , Imunidade Inata , Macrófagos , Proteínas de Membrana , Animais , Humanos , Imunidade Inata/efeitos dos fármacos , Camundongos , Antivirais/farmacologia , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Proteínas de Membrana/agonistas , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Células THP-1 , Replicação Viral/efeitos dos fármacos , Influenza Humana/imunologia , Influenza Humana/virologia , Influenza Humana/tratamento farmacológico , Cães , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae/efeitos dos fármacos , Orthomyxoviridae/imunologia , Orthomyxoviridae/fisiologia , Benzimidazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos
11.
Clin Exp Otorhinolaryngol ; 17(2): 147-159, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480529

RESUMO

OBJECTIVES: Air pollution is an increasing global concern, and its effect on allergic inflammation has attracted the attention of many researchers. Particulate matter (PM) is a major component of ambient air pollution, and heavy metals are the primary toxic constituents of PM. As previous studies on the impact of air pollutants on allergic inflammation did not adequately mimic real-world atmospheric exposure, we developed an experimental model to investigate the effects of aerosolized air pollutants on nasal epithelial cells and fibroblasts. METHODS: We collected particulate matter 2.5 (PM2.5) samples from ambient 24-hour air samples obtained in Seoul from August 2020 to August 2022, and then conducted component analysis for metallic constituents. Primary nasal epithelial cells and nasal fibroblasts, obtained and cultured from the turbinate tissues of human participants, were treated with PM2.5. The associations of heavy metals identified from the component analysis with cytokine expression were investigated. A three-dimensional (3D)-hybrid culture model, consisting of co-culture of an air-liquid interface and nasal fibroblast spheroids, was constructed to observe the impact of aerosolized air pollutants. RESULTS: Among the heavy metals, Si was the predominant component of PM2.5, and Zn showed the highest correlation with the concentration of PM2.5 in Seoul. PM2.5, Zn, and Si increased the production of epithelial cell-derived cytokines, and PM2.5 and Zn exhibited similar trends with one another. Exposure of the 3D-hybrid model to aerosolized PM2.5 and Zn resulted in elevated periostin, alpha-smooth muscle actin, and fibronectin expression in fibroblast spheroids, and those without an epithelial barrier exhibited a similar increase in periostin expression. CONCLUSION: Ambient air pollutants in the form of aerosols increase the expression of allergic inflammatory cytokines in both nasal epithelial cells and fibroblasts. Regulations on air pollution will help reduce the global burden of allergic diseases in the future.

12.
PLoS One ; 19(5): e0285655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753593

RESUMO

BACKGROUND: Chronic rhinosinusitis (CRS) is an inflammatory disease affecting the sinuses or nose. Persistent inflammatory responses can lead to tissue remodeling, which is a pathological characteristics of CRS. Activation of fibroblasts in the nasal mucosal stroma, differentiation and collagen deposition, and subepithelial fibrosis have been associated with CRS. OBJECTIVES: We aimed to assess the inhibitory effects of doxycycline and deoxycholic acid-polyethyleneimine conjugate (DA3-Doxy) on myofibroblast differentiation and extracellular matrix (ECM) production in nasal fibroblasts stimulated with TGF-ß1. METHODS: To enhance efficacy, we prepared DA3-Doxy using a conjugate of low-molecular-weight polyethyleneimine (PEI) (MW 1800) and deoxycholic acid (DA) and Doxy. The synthesis of the DA3-Doxy polymer was confirmed using nuclear magnetic resonance, and the critical micelle concentration required for cationic micelle formation through self-assembly was determined. Subsequently, the Doxy loading efficiency of DA3 was assessed. The cytotoxicity of Doxy, DA3, PEI, and DA-Doxy in nasal fibroblasts was evaluated using the WST-1 assay. The anti-tissue remodeling and anti-inflammatory effects of DA3-Doxy and DA3 were examined using real-time polymerase chain reaction (Real-time PCR), immunocytochemistry, western blot, and Sircol assay. RESULTS: Both DA3 and DA3-Doxy exhibited cytotoxicity at 10 µg/ml in nasal fibroblasts. Doxy partially inhibited α-smooth muscle actin, collagen types I and III, and fibronectin. However, DA3-Doxy significantly inhibited α-SMA, collagen types I and III, and fibronectin at 5 µg/ml. DA3-Doxy also modulated TGF-ß1-induced changes in the expression of MMP 1, 2, and 9. Nonetheless, TGF-ß1-induced expression of MMP3 was further increased by DA3-Doxy. The expression of TIMP 1 and 2 was partially reduced with 5 µg/ml DA3-Doxy. CONCLUSIONS: Although initially developed for the delivery of genetic materials or drugs, DA3 exhibits inhibitory effects on myofibroblast differentiation and ECM production. Therefore, it holds therapeutic potential for CRS, and a synergistic effect can be expected when loaded with CRS treatment drugs.


Assuntos
Diferenciação Celular , Ácido Desoxicólico , Doxiciclina , Fibroblastos , Polietilenoimina , Humanos , Polietilenoimina/química , Polietilenoimina/farmacologia , Ácido Desoxicólico/química , Ácido Desoxicólico/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Doxiciclina/farmacologia , Doxiciclina/química , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Mucosa Nasal/efeitos dos fármacos , Mucosa Nasal/metabolismo , Mucosa Nasal/citologia , Actinas/metabolismo
13.
PLoS One ; 19(3): e0297536, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478548

RESUMO

Nasal endoscopy is routinely performed to distinguish the pathological types of masses. There is a lack of studies on deep learning algorithms for discriminating a wide range of endoscopic nasal cavity mass lesions. Therefore, we aimed to develop an endoscopic-examination-based deep learning model to detect and classify nasal cavity mass lesions, including nasal polyps (NPs), benign tumors, and malignant tumors. The clinical feasibility of the model was evaluated by comparing the results to those of manual assessment. Biopsy-confirmed nasal endoscopic images were obtained from 17 hospitals in South Korea. Here, 400 images were used for the test set. The training and validation datasets consisted of 149,043 normal nasal cavity, 311,043 NP, 9,271 benign tumor, and 5,323 malignant tumor lesion images. The proposed Xception architecture achieved an overall accuracy of 0.792 with the following class accuracies on the test set: normal = 0.978 ± 0.016, NP = 0.790 ± 0.016, benign = 0.708 ± 0.100, and malignant = 0.698 ± 0.116. With an average area under the receiver operating characteristic curve (AUC) of 0.947, the AUC values and F1 score were highest in the order of normal, NP, malignant tumor, and benign tumor classes. The classification performances of the proposed model were comparable with those of manual assessment in the normal and NP classes. The proposed model outperformed manual assessment in the benign and malignant tumor classes (sensitivities of 0.708 ± 0.100 vs. 0.549 ± 0.172, 0.698 ± 0.116 vs. 0.518 ± 0.153, respectively). In urgent (malignant) versus nonurgent binary predictions, the deep learning model achieved superior diagnostic accuracy. The developed model based on endoscopic images achieved satisfactory performance in classifying four classes of nasal cavity mass lesions, namely normal, NP, benign tumor, and malignant tumor. The developed model can therefore be used to screen nasal cavity lesions accurately and rapidly.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Cavidade Nasal/diagnóstico por imagem , Algoritmos , Endoscopia/métodos
14.
Phytother Res ; 27(3): 463-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22674629

RESUMO

Naringenin, a natural predominant flavanone derived from plant food, has antifibrotic activity. The purposes of this study were to determine the effect of naringenin on myofibroblast differentiation and extracellular matrix (ECM) production in nasal polyp-derived fibroblasts (NPDFs) and to determine the molecular mechanism of the effect of naringenin on NPDFs. NPDFs were incubated and treated with transforming growth factor (TGF)-ß1. The expression of alpha smooth muscle actin (α-SMA), fibronectin, and collagen type I mRNA was determined by a reverse transcription-polymerase chain reaction, and the expression of those proteins was determined by immunofluorescence staining or Western blotting. Expression of several signaling molecules of the TGF-ß1 pathway was evaluated by Western blot analysis. Naringenin inhibits expression of an indicator of myofibroblast differentiation (α-SMA) and ECM production, including collagen type 1 and fibronectin. Naringenin only suppressed the expression of extracellular signal-regulated protein kinase (pERK)1/2 among evaluated signaling molecules. PD98059 (a specific inhibitor of ERK1/2 kinase) also suppressed the increased expression of fibronectin, collagen type I, and α-SMA in TGF-ß1-induced NPDFs. These results suggest the possibility that naringenin may play an inhibitory role in the production of the ECM in the development of nasal polyps.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Fibroblastos/efeitos dos fármacos , Flavanonas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Actinas/metabolismo , Adulto , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/citologia , Fibronectinas/metabolismo , Flavonoides/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Pólipos Nasais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Crescimento Transformador beta1
15.
Phytother Res ; 27(1): 16-20, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22422627

RESUMO

The purposes of this study were to determine whether berberine has any effect on phenotype changes and extracellular matrix (ECM) production in nasal polyp-derived fibroblasts (NPDFs) and to investigate the underlying molecular mechanism. NPDFs were pre-treated with berberine prior to induction by transforming growth factor (TGF)-ß1. The expression of α-smooth muscle actin (SMA) and collagen type I mRNA was determined by a reverse transcription-polymerase chain reaction, and the expression of α-SMA protein and collagen type I was determined by western blotting and/or immunofluorescent staining. The total soluble collagen production was analysed by the SirCol collagen assay. The expression of several signaling molecules of the TGF-ß1 pathway was evaluated by western blot analysis. In TGF-ß1-induced NPDFs, berberine significantly inhibited the expression of α-SMA and collagen type I mRNA and reduced α-SMA and collagen protein levels. Berberine only suppressed the expression of pp38 among the evaluated signaling molecules. SB203580 (a specific inhibitor of p38 kinase) markedly suppressed the increased expression of collagen type I and α-SMA in TGF-ß1-induced NPDFs. Berberine exerts suppressive effects on phenotype changes and ECM production in NPDFs via p38 signaling pathway interference. The findings provide new therapeutic options for ECM production in nasal polyps.


Assuntos
Berberina/farmacologia , Diferenciação Celular/efeitos dos fármacos , Miofibroblastos/efeitos dos fármacos , Pólipos Nasais/patologia , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Actinas/metabolismo , Adulto , Células Cultivadas , Colágeno Tipo I/metabolismo , Feminino , Humanos , Masculino , Miofibroblastos/citologia , Fator de Crescimento Transformador beta1/farmacologia
16.
PLoS One ; 18(2): e0281640, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795696

RESUMO

BACKGROUND: Glycolytic reprogramming is a key feature of chronic inflammatory disease. Extracellular matrix (ECM) produced by myofibroblasts plays an important role in tissue remodeling of nasal mucosa in chronic rhinosinusitis (CRS). This study aimed to determine whether glycolytic reprogramming contributes to myofibroblast differentiation and ECM production in nasal fibroblasts. METHODS: Primary nasal fibroblasts were isolated from the nasal mucosa of patients with CRS. Glycolytic reprogramming was assessed by measuring the extracellular acidification and oxygen consumption rates in nasal fibroblast, with and without transforming growth factor beta 1 (TGF-ß1) treatment. Expression of glycolytic enzymes and ECM components was measured by real-time polymerase chain reaction, western blotting, and immunocytochemical staining. Gene set enrichment analysis was performed using whole RNA-sequencing data of nasal mucosa of healthy donors and patients with CRS. RESULT: Glycolysis of nasal fibroblasts stimulated with TGF-B1 was upregulated along with glycolytic enzymes. Hypoxia-inducing factor (HIF)-1α was a high-level regulator of glycolysis, and increased HIF-1α expression promoted glycolysis of nasal fibroblasts, and inhibition of HIF-1α down-regulated myofibroblasts differentiation and ECM production. CONCLUSION: This study suggests that inhibition of the glycolytic enzyme and HIF-1α in nasal fibroblasts regulates myofibroblast differentiation and ECM generation associated with nasal mucosa remodeling.


Assuntos
Miofibroblastos , Pólipos Nasais , Humanos , Células Cultivadas , Miofibroblastos/metabolismo , Fibroblastos/metabolismo , Matriz Extracelular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Glicólise/fisiologia , Pólipos Nasais/metabolismo
17.
Plants (Basel) ; 12(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37653930

RESUMO

Epithelial-to-mesenchymal transition (EM transition) is a process wherein epithelial cells lose their intrinsic characteristics and cell-cell junctions and differentiate into a mesenchymal phenotype. EM transition is an important feature of cancer invasion and metastasis. In this study, we aimed to investigate the inhibitory effect of gintonin (GT), an ingredient of ginseng, on EM transition using A549 cells. The proliferation of A549 cells was enhanced following treatment with 50, 75, and 100 µg/mL of GT. GT affected EM transition-induced gene and protein expression, specifically that of vimentin (Vim), N-cadherin (N-cad), zinc finger E-box-binding homeobox 1, and Twist in A549 cells. Furthermore, the transforming growth factor beta 1 (TGF-ß1)-induced phosphorylation of Smad2 and Smad3 was suppressed by GT treatment. Immunofluorescence staining also showed that GT treatment decreased the TGF-ß1-induced expression of Vim and N-cad in A549 cells. Therefore, GT may be used to suppress cancer cell metastasis via maintenance of the cell-cell junction's integrity. However, further studies are required to pave the way for its translation into clinical application in cancer therapeutics.

18.
J Otolaryngol Head Neck Surg ; 52(1): 69, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37876017

RESUMO

BACKGROUND: Biocompatibility and stability of three-dimensional printed polycaprolactone mesh grafts for nasal surgery are proven in both animal and human models. However, their safety and durability as batten grafts for caudal septal deviation has not been documented. This study was designed to investigate the efficacy and safety of three-dimensional printed polycaprolactone mesh batten graft in septoplasty using the wedge resection technique for the correction of caudal septal deviation. METHODS: This retrospective study reviewed the medical records of 20 patients aged ≥ 18 years with caudal septal deviation who underwent septoplasty with wedge resection and three-dimensional printed polycaprolactone mesh graft from a tertiary medical center in South Korea, between December 1, 2019 and May 31, 2021. Those without nasal obstruction before surgery or with a short follow-up period (< 28 days) were excluded from the survey analysis. RESULTS: Of the 20 patients (mean age, 48.0 [range, 19-65] years), 17 (85.0%) were male, and three (15.0%) were female. A significant change was noted in the mean nasal obstruction symptom evaluation score (68.2 vs. 15.0, P < .001) in the 17 patients included in the analysis. Postoperative endoscopic evaluation revealed a straight septum in 19/20 (95.0%) patients, and no complications were noted in the postoperative follow-up period of up to 364 days. CONCLUSIONS: The three-dimensional printed polycaprolactone nasal mesh is safe and provides adequate support to resist the intrinsic memory of the cartilage of the caudal septum. In addition to nasal surgeries, it has great potential as a graft in other reconstructive surgeries. Trial registration Retrospectively registered.


Assuntos
Obstrução Nasal , Rinoplastia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Obstrução Nasal/cirurgia , Resultado do Tratamento , Estudos Retrospectivos , Telas Cirúrgicas/efeitos adversos , Septo Nasal/cirurgia , Rinoplastia/métodos , Impressão Tridimensional
19.
Antioxidants (Basel) ; 12(7)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37507970

RESUMO

Human skin comprises the epidermis and dermis, which perform interactive functional activities with each other in order to maintain the skin's tensile strength. In particular, the dermal layer is crucial for skin protection. However, skin aging destroys collagen and elastin fibers, causing wrinkles, pigments, and sagging. Skin aging-related factors, such as tumor necrosis factor-α (TNF-α), promote the generation of intercellular reactive oxygen species (ROS). These are known to stimulate the hypersecretion of matrix metalloproteinase-1 (MMP-1), which degrades collagen and inhibits collagen synthesis. In this study, as part of our ongoing discovery of natural products, we investigated potential natural products derived from ginkgo fruit (Ginkgo biloba fruit) with protective effects against TNF-α-induced skin aging. Phytochemical investigation of the MeOH extract of G. biloba fruits, aided by liquid chromatography-mass spectrometry, led to the isolation of 14 compounds (1-14) from the n-butanol-soluble fraction. These were structurally determined to be: (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-ß-D-glucopyranoside (3), vanillic acid 4-O-ß-D-glucopyranoside (4), glucosyringic acid (5), (E)-ferulic acid 4-O-ß-D-glucoside (6), (E)-sinapic acid 4-O-ß-D-glucopyranoside (7), ginkgotoxin-5-glucoside (8), ginkgopanoside (9), (Z)-4-coumaric acid 4-O-ß-D-glucopyranoside (10), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-ß-D-glucopyranoside (11), eucomic acid (12), rutin (13), and laricitrin 3-rutinoside (L3R) (14). Biological evaluation of the isolated compounds for their effects on intracellular ROS generation showed that, of these 14 compounds, L3R (14) inhibited TNF-α-stimulated ROS generation (p < 0.001 at 100 µM). Inhibition of ROS generation by L3R led to the suppression of MMP-1 secretion and protection against collagen degradation. The inhibitory effect of L3R was mediated by the inhibition of extracellular signal regulated kinase (ERK) phosphorylation. Furthermore, L3R diminished the secretion of pro-inflammatory cytokines interleukin 6 (IL-6) and interleukin 8 (IL-8). Based on these experimental results, L3R is a potential bioactive natural product that can be used to protect against skin damage, including aging, in cosmetics and pharmaceuticals.

20.
Biomol Ther (Seoul) ; 31(4): 395-401, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37376952

RESUMO

Innate immunity is a first line defence system in the body which is for sensing signals of danger such as pathogenic microbes or host-derived signals of cellular stress. Pattern recognition receptors (PRR's), which present in the cell memebrane, are suspect the infection through pathogen-associated molecular patterns (PAMP), and activate innate immunity with response to promote inflammation via inflammatory cells such as macrophages and neutrophils, and cytokines. Inflammasome are protein complexes which are part of innate immunity in inflammation to remove pathogens and repair damaged tissues. What is the important role of inflammation in disease? In this review, we are focused on the action mechanism of NLRP3 inflammasome in inflammatory diseases such as asthma, atopic dermatitis, and sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA