Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(51): e2214911119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36512502

RESUMO

The liver-specific microRNA, miR-122, plays an essential role in the propagation of hepatitis C virus (HCV) by binding directly to the 5'-end of its genomic RNA. Despite its significance for HCV proliferation, the host factors responsible for regulating miR-122 remain largely unknown. In this study, we identified the cellular RNA-binding protein, ELAVL1/HuR (embryonic lethal-abnormal vision-like 1/human antigen R), as critically contributing to miR-122 biogenesis by strong binding to the 3'-end of miR-122. The availability of ELAVL1/HuR was highly correlated with HCV proliferation in replicon, infectious, and chronically infected patient conditions. Furthermore, by screening a kinase inhibitor library, we identified rigosertib, an anticancer agent under clinical trials, as having both miR-122-modulating and anti-HCV activities that were mediated by its ability to target polo-like kinase 1 (PLK1) and subsequently modulate ELAVL1/HuR-miR-122 signaling. The expression of PLK1 was also highly correlated with HCV proliferation and the HCV positivity of HCC patients. ELAVL1/HuR-miR-122 signaling and its mediation of PLK1-dependent HCV proliferation were demonstrated by performing various rescue experiments and utilizing an HCV mutant with low dependency on miR-122. In addition, the HCV-inhibitory effectiveness of rigosertib was validated in various HCV-relevant conditions, including replicons, infected cells, and replicon-harboring mice. Rigosertib was highly effective in inhibiting the proliferation of not only wild-type HCVs, but also sofosbuvir resistance-associated substitution-bearing HCVs. Our study identifies PLK1-ELAVL1/HuR-miR-122 signaling as a regulatory axis that is critical for HCV proliferation, and suggests that a therapeutic approach targeting this host cell signaling pathway could be useful for treating HCV and HCV-associated diseases.


Assuntos
Carcinoma Hepatocelular , Hepatite C , Neoplasias Hepáticas , MicroRNAs , Animais , Humanos , Camundongos , Carcinoma Hepatocelular/genética , Proliferação de Células , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Hepacivirus/fisiologia , Hepatite C/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Quinase 1 Polo-Like
2.
Gastroenterology ; 164(7): 1293-1309, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36898552

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinomas (iCCs) are characterized by their rarity, difficult diagnosis, and overall poor prognosis. The iCC molecular classification for developing precision medicine strategies was investigated. METHODS: Comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic analyses were performed on treatment-naïve tumor samples from 102 patients with iCC who underwent surgical resection with curative intent. An organoid model was constructed for testing therapeutic potential. RESULTS: Three clinically supported subtypes (stem-like, poorly immunogenic, and metabolism) were identified. NCT-501 (aldehyde dehydrogenase 1 family member A1 [ALDH1A1] inhibitor) exhibited synergism with nanoparticle albumin-bound-paclitaxel in the organoid model for the stem-like subtype. The oncometabolite dysregulations were associated with different clinical outcomes in the stem-like and metabolism subtypes. The poorly immunogenic subtype harbors the non-T-cell tumor infiltration. Integrated multiomics analysis not only reproduced the 3 subtypes but also showed heterogeneity in iCC. CONCLUSIONS: This large-scale proteogenomic analysis provides information beyond that obtained with genomic analysis, allowing the functional impact of genomic alterations to be discerned. These findings may assist in the stratification of patients with iCC and in developing rational therapeutic strategies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Proteogenômica , Humanos , Proteômica , Prognóstico , Colangiocarcinoma/genética , Colangiocarcinoma/cirurgia , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/patologia
3.
Nano Lett ; 23(6): 2277-2286, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913627

RESUMO

Colloidal nanocrystals (NCs) have shown remarkable promise for optoelectronics, energy harvesting, photonics, and biomedical imaging. In addition to optimizing quantum confinement, the current challenge is to obtain a better understanding of the critical processing steps and their influence on the evolution of structural motifs. Computational simulations and electron microscopy presented in this work show that nanofaceting can occur during nanocrystal synthesis from a Pb-poor environment in a polar solvent. This could explain the curved interfaces and the olivelike-shaped NCs observed experimentally when these conditions are employed. Furthermore, the wettability of the PbS NCs solid film can be further modified via stoichiometry control, which impacts the interface band bending and, therefore, processes such as multiple junction deposition and interparticle epitaxial growth. Our results suggest that nanofaceting in NCs can become an inherent advantage when used to modulate band structures beyond what is traditionally possible in bulk crystals.

4.
Int J Mol Sci ; 25(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38542098

RESUMO

Leptomeningeal metastasis (LM) is a common and fatal complication of advanced non-small cell lung cancer (NSCLC) caused by the spread of malignant cells to the leptomeninges and cerebrospinal fluid (CSF). While intra-CSF methotrexate (MTX) chemotherapy can improve prognosis, eventual MTX resistance deters continued chemotherapy. Recent studies have shown that increased miRNA-21 (miR-21) expression in the CSF of patients with LM after intraventricular MTX-chemotherapy is associated with poor overall survival; however, the molecular mechanisms underlying this resistance are poorly understood. Here, we confirm, in 36 patients with NSCLC-LM, that elevated miR-21 expression prior to treatment correlates with poor prognosis. MiR-21 overexpression or sponging results in a corresponding increase or decrease in MTX resistance, demonstrating that cellular miR-21 expression correlates with drug resistance. MiR-21-monitoring sensor and fluorescent extracellular vesicle (EV) staining revealed that EV-mediated delivery of miR-21 could modulate MTX resistance. Moreover, EVs isolated from the CSF of LM patients containing miR-21 could enhance the cell proliferation and MTX resistance of recipient cells. These results indicate that miR-21 can be transferred from cell-to-cell via EVs and potentially modulate MTX sensitivity, suggesting that miR-21 in CSF EVs may be a prognostic and therapeutic target for overcoming MTX resistance in patients with NSCLC-LM.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Vesículas Extracelulares , Neoplasias Pulmonares , MicroRNAs , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Metotrexato/farmacologia , Metotrexato/uso terapêutico , MicroRNAs/genética , MicroRNAs/uso terapêutico , Vesículas Extracelulares/genética , Vesículas Extracelulares/patologia
5.
Cell Mol Life Sci ; 79(3): 181, 2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35278143

RESUMO

Glioblastomas (GBM) exhibit intratumoral heterogeneity of various oncogenic evolutional processes. We have successfully isolated and established two distinct cancer cell lines with different morphological and biological characteristics that were derived from the same tissue sample of a GBM. When we compared their genomic and transcriptomic characteristics, each cell line harbored distinct mutation clusters while sharing core driver mutations. Transcriptomic analysis revealed that one cell line was undergoing a mesenchymal transition process, unlike the other cell line. Furthermore, we could identify four tumor samples containing our cell line-like clusters from the publicly available single-cell RNA-seq data, and in a set of paired longitudinal GBM samples, we could confirm three pairs where the recurrent sample was enriched in the genes specific to our cell line undergoing mesenchymal transition. The present study provides direct evidence and a valuable source for investigating the ongoing process of subcellular mesenchymal transition in GBM, which has prognostic and therapeutic implications.


Assuntos
Neoplasias Encefálicas/patologia , Transição Epitelial-Mesenquimal/genética , Glioblastoma/patologia , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Análise de Célula Única , Transplante Heterólogo
6.
Molecules ; 28(4)2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36838527

RESUMO

A linear-shaped small organic molecule (E)-4-(5-(3,5-dimethoxy-styryl)thiophen-2-yl)-7-(5″-hexyl-[2,2':5',2″-terthiophen]-5-yl)benzo[c][1,2,5]thiadiazole (MBTR) comprising a benzothiadiazole (BTD) acceptor linked with the terminal donors bithiophene and dimethoxy vinylbenzene through a π-bridge thiophene was synthesized and analyzed. The MBTR efficiently tuned the thermal, absorption, and emission characteristics to enhance the molecular packing and aggregation behaviors in the solid state. The obtained optical bandgap of 1.86 eV and low-lying highest occupied molecular orbital (HOMO) level of -5.42 eV efficiently lowered the energy losses in the fabricated devices, thereby achieving enhanced photovoltaic performances. The optimized MBTR:PC71BM (1:2.5 w/w%) fullerene-based devices showed a maximum power conversion efficiency (PCE) of 7.05%, with an open-circuit voltage (VOC) of 0.943 V, short-circuit current density (JSC) of 12.63 mA/cm2, and fill factor (FF) of 59.2%. With the addition of 3% 1,8-diiodooctane (DIO), the PCE improved to 8.76% with a high VOC of 1.02 V, JSC of 13.78 mA/cm2, and FF of 62.3%, which are associated with improved charge transport at the donor/acceptor interfaces owing to the fibrous active layer morphology and favorable phase separation. These results demonstrate that the introduction of suitable donor/acceptor groups in molecular design and device engineering is an effective approach to enhancing the photovoltaic performances of organic solar cells.


Assuntos
Fulerenos , Doadores de Tecidos , Humanos , Bandagens , Engenharia , Fadiga , Tiofenos
7.
Brain ; 144(2): 636-654, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33479772

RESUMO

As the clinical failure of glioblastoma treatment is attributed by multiple components, including myelin-associated infiltration, assessment of the molecular mechanisms underlying such process and identification of the infiltrating cells have been the primary objectives in glioblastoma research. Here, we adopted radiogenomic analysis to screen for functionally relevant genes that orchestrate the process of glioma cell infiltration through myelin and promote glioblastoma aggressiveness. The receptor of the Nogo ligand (NgR1) was selected as the top candidate through Differentially Expressed Genes (DEG) and Gene Ontology (GO) enrichment analysis. Gain and loss of function studies on NgR1 elucidated its underlying molecular importance in suppressing myelin-associated infiltration in vitro and in vivo. The migratory ability of glioblastoma cells on myelin is reversibly modulated by NgR1 during differentiation and dedifferentiation process through deubiquitinating activity of USP1, which inhibits the degradation of ID1 to downregulate NgR1 expression. Furthermore, pimozide, a well-known antipsychotic drug, upregulates NgR1 by post-translational targeting of USP1, which sensitizes glioma stem cells to myelin inhibition and suppresses myelin-associated infiltration in vivo. In primary human glioblastoma, downregulation of NgR1 expression is associated with highly infiltrative characteristics and poor survival. Together, our findings reveal that loss of NgR1 drives myelin-associated infiltration of glioblastoma and suggest that novel therapeutic strategies aimed at reactivating expression of NgR1 will improve the clinical outcome of glioblastoma patients.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Bainha de Mielina/metabolismo , Receptor Nogo 1/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 1 Inibidora de Diferenciação/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos Endogâmicos BALB C , Bainha de Mielina/patologia , Proteases Específicas de Ubiquitina/metabolismo
8.
J Neurosci Res ; 99(11): 2874-2887, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34510521

RESUMO

Axons in the adult mammalian central nervous system fail to regenerate after injury. By contrast, spontaneous axon regeneration occurs in the peripheral nervous system (PNS) due to a supportive PNS environment and an increase in the intrinsic growth potential induced by injury via cooperative activation of multifaceted biological pathways. This study compared axon regeneration and injury responses in C57BL/6 male and female mice after sciatic nerve crush (SNC) injury. The extent of axon regeneration in vivo was indistinguishable in male and female mice when observed at 3 days after SNC injury, and primary dorsal root ganglion (DRG) neurons from injured, male and female mice extended axons to a similar length. Moreover, the induction of selected regeneration-associated genes (RAGs), such as Atf3, Sprr1a, Gap43, Sox11, Jun, Gadd45a, and Smad1 were comparable in male and female DRGs when assessed by quantitative real-time reverse transcription polymerase chain reaction. Furthermore, the RNA-seq analysis of male and female DRGs revealed that differentially expressed genes (DEGs) in SNC groups compared to sham-operated groups included many common genes associated with neurite outgrowth. However, we also found that a large number of genes in the DEGs were sex dependent, implicating the involvement of distinct gene regulatory network in the two sexes following peripheral nerve injury. In conclusion, we found that male and female mice mounted a comparable axon regeneration response and many RAGs were commonly induced in response to SNC. However, given that many DEGs were sex-dependently expressed, future studies are needed to investigate whether they contribute to peripheral axon regeneration, and if so, to what extent.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Axônios/fisiologia , Feminino , Gânglios Espinais/metabolismo , Masculino , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Regeneração Nervosa/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático
9.
Nanotechnology ; 32(49)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34428759

RESUMO

Iron oxyhydroxide (FeOOH) nanostructures of different shapes were successfully synthesized on flexible textile cloth of polyester using a novel and simple technique based on hydrolysis method. The technique used herein is newly designed specifically to improve the efficiency in terms of energy, simplicity and cost involved in large scale synthesis of nanostructured thin films. Additionally, the morphology of nano-sized iron oxyhydroxide could be tuned into different shapes through variation in the type of precursors used for synthesis. The uniformity and adhesion of the depositions were also found to be excellent as examined by qualitative techniques. The as-deposited samples exhibited monoclinic and orthorhombic structures of FeOOH. A significant variation in the shape of as-deposited FeOOH nanostructures with change in precursor was observed through morphological studies, which displayed lance-shaped, rounded clusters and rod-like growth features in different cases. The nanocrystalline FeOOH can be directly applied to attract and trap phosphate from water reservoirs, thus contributing to environmental solutions. The proposed technique can also be utilized to deposit larger areas, which could be suitable for practical applications.

10.
Int J Mol Sci ; 21(23)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256086

RESUMO

Glioblastoma is a type of aggressive brain tumor that grows very fast and evades surrounding normal brain, lead to treatment failure. Glioblastomas are associated with Akt activation due to somatic alterations in PI3 kinase/Akt pathway and/or PTEN tumor suppressor. Sodium meta-arsenite, KML001 is an orally bioavailable, water-soluble, and trivalent arsenical and it shows antitumoral effects in several solid tumor cells via inhibiting oncogenic signaling, including Akt and MAPK. Here, we evaluated the effect of sodium meta-arsenite, KML001, on the growth of human glioblastoma cell lines with different PTEN expression status and Akt activation, including PTEN-deficient cells (U87-MG and U251) and PTEN-positive cells (LN229). The growth-inhibitory effect of KML001 was stronger in U87-MG and U251 cells, which exhibited higher Akt activity than LN229 cells. KML001 deactivated Akt and decreased its protein levels via proteasomal degradation in U87-MG cells. KML001 upregulated mutant PTEN levels via inhibition of its proteasomal degradation. KML001 inhibited cell growth more effectively in active Akt-overexpressing LN229 cells than in mock-expressing LN229 cells. Consistent with these results, KML001 sensitized PTEN-deficient cells more strongly to growth inhibition than it did PTEN-positive cells in prostate and breast cancer cell lines. Finally, we illustrated in vivo anti-tumor effects of KML001 using an intracranial xenograft mouse model. These results suggest that KML001 could be an effective chemotherapeutic drug for the treatment of glioblastoma cancer patients with higher Akt activity and PTEN loss.


Assuntos
Antineoplásicos/uso terapêutico , Arsenitos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/enzimologia , Glioblastoma/tratamento farmacológico , Glioblastoma/enzimologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Compostos de Sódio/uso terapêutico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Arsenitos/farmacologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , PTEN Fosfo-Hidrolase/metabolismo , Compostos de Sódio/farmacologia , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
World J Surg Oncol ; 17(1): 59, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30917830

RESUMO

BACKGROUND: Leptomeningeal carcinomatosis (LMC) is frequently associated with hydrocephalus, which quickly devastates the performance of the patient. Cerebrospinal fluid (CSF) shunt is a widely accepted treatment of choice, but the clinical outcomes in patients with LMC are not well studied. This study aimed to examine the efficacy of a CSF shunt in patients with LMC. METHODS: Seventy patients with LMC confirmed by cytology or magnetic resonance imaging (MRI) underwent ventriculoperitoneal (VP) or lumboperitoneal (LP) shunt surgery. We retrospectively analyzed the clinical characteristics of patients, symptom improvement after the shunt, rate of complications associated with the surgery, and overall survival. RESULTS: Fifty-five patients had systemic cancer as a preceding disease, including lung cancer (45), breast cancer (6), and others (4). Primary brain tumors were mainly glioma (7) and medulloblastoma (5). Fifty-one patients had VP shunt, and 19 had LP shunt. After surgery, preoperative symptoms "improved" in 35 patients (50%) and were "normalized" in 24 of those patients (34%). Shunt malfunction occurred in eight patients, and infection occurred in eight patients. Seventeen patients underwent revision due to infection, shunt malfunction, or over-drainage. There were no complications associated with peritoneal seeding during a median follow-up of 3.3 months after surgery. The median overall survival was 8.7 months (95% confidence interval, 6.0-11.4) from LMC diagnosis and 4.1 months from shunt surgery. CONCLUSION: VP or LP shunt is effective for patients with hydrocephalus from LMC in terms of symptom improvement and prolonging of overall survival with an acceptable rate of procedure-related complications. TRIAL REGISTRATION: This study was approved by the Institutional Review Board (IRB) of the National Cancer Center (retrospectively registered, NCC2018-0051 ).


Assuntos
Neoplasias Encefálicas/patologia , Derivações do Líquido Cefalorraquidiano/métodos , Glioma/complicações , Hidrocefalia/cirurgia , Carcinomatose Meníngea/complicações , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Derivações do Líquido Cefalorraquidiano/efeitos adversos , Criança , Pré-Escolar , Registros Eletrônicos de Saúde/estatística & dados numéricos , Feminino , Glioma/mortalidade , Glioma/secundário , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Hidrocefalia/mortalidade , Lactente , Imageamento por Ressonância Magnética , Masculino , Carcinomatose Meníngea/mortalidade , Carcinomatose Meníngea/secundário , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Prognóstico , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
13.
Amino Acids ; 50(11): 1583-1594, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30105541

RESUMO

Previously we have demonstrated transglutaminase 2 (TGase 2) inhibition abrogated renal cell carcinoma (RCC) using GK921 (3-(phenylethynyl)-2-(2-(pyridin-2-yl)ethoxy)pyrido[3,2-b]pyrazine), although the mechanism of TGase 2 inhibition remains unsolved. Recently, we found that the increase of TGase 2 expression is required for p53 depletion in RCC by transporting the TGase 2 (1-139 a.a)-p53 complex to the autophagosome, through TGase 2 (472-687 a.a) binding p62. In this study, mass analysis revealed that GK921 bound to the N terminus of TGase 2 (81-116 a.a), which stabilized p53 by blocking TGase 2 binding. This suggests that RCC survival can be stopped by p53-induced cell death through blocking the p53-TGase 2 complex formation using GK921. Although GK921 does not bind to the active site of TGase 2, GK921 binding to the N terminus of TGase 2 also inactivated TGase 2 activity through acceleration of non-covalent self-polymerization of TGase 2 via conformational change. This suggests that TGase 2 has an allosteric binding site (81-116 a.a) which changes the conformation of TGase 2 enough to accelerate inactivation through self-polymer formation.


Assuntos
Carcinoma de Células Renais/enzimologia , Proteínas de Ligação ao GTP/metabolismo , Neoplasias Renais/enzimologia , Proteínas de Neoplasias/metabolismo , Transglutaminases/metabolismo , Regulação Alostérica , Carcinoma de Células Renais/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas de Ligação ao GTP/antagonistas & inibidores , Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Neoplasias Renais/tratamento farmacológico , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Domínios Proteicos , Proteína 2 Glutamina gama-Glutamiltransferase , Pirazinas/farmacologia , Transglutaminases/antagonistas & inibidores , Transglutaminases/genética
14.
PLoS Biol ; 13(5): e1002152, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25992628

RESUMO

Epidermal growth factor receptor variant III (EGFRvIII) has been associated with glioma stemness, but the direct molecular mechanism linking the two is largely unknown. Here, we show that EGFRvIII induces the expression and secretion of pigment epithelium-derived factor (PEDF) via activation of signal transducer and activator of transcription 3 (STAT3), thereby promoting self-renewal and tumor progression of glioma stem cells (GSCs). Mechanistically, PEDF sustained GSC self-renewal by Notch1 cleavage, and the generated intracellular domain of Notch1 (NICD) induced the expression of Sox2 through interaction with its promoter region. Furthermore, a subpopulation with high levels of PEDF was capable of infiltration along corpus callosum. Inhibition of PEDF diminished GSC self-renewal and increased survival of orthotopic tumor-bearing mice. Together, these data indicate the novel role of PEDF as a key regulator of GSC and suggest clinical implications.


Assuntos
Receptores ErbB/metabolismo , Proteínas do Olho/metabolismo , Glioma/etiologia , Células-Tronco Neoplásicas/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Animais , Comunicação Autócrina , Progressão da Doença , Feminino , Glioma/metabolismo , Glioma/mortalidade , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fator de Transcrição STAT3/metabolismo
15.
Biochem Biophys Res Commun ; 493(1): 325-331, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28888985

RESUMO

The proto-oncogene tyrosine kinase ROS1 plays a key role in carcinogenesis through gene rearrangement to form a fusion protein with other genes, in which the C-terminal intracellular region of ROS1 participates. The possibility of wild type ROS1 overexpression through epigenetic regulation has been proposed. Here, we generated an antibody, 3B20, reactive to the N-terminal region of ROS1 to use it for the detection of wild type ROS1 in cancerous tissues. Using immunoblot and immunoprecipitation analyses, we found that 3B20 also reacted with heat shock proteins (Hsp)70s. Using homology searching, ROS1 and Hsp70s were found to share an identical amino acid sequence: DLGT. Using alanine mutagenesis of ROS1, the epitope was found to harbor this sequence. To modify the idiotope with the aim of selecting more specific antibodies, we introduced random mutations into the heavy chain complementarity-determining region 3 and successfully generated an antibody clone, 3B20-G1K, with a point mutation that only reacted with ROS1 in enzyme-linked immunosorbent assays, and in immunoblot and immunoprecipitation analysis. In immunohistochemical analysis using 3B20-G1K, ROS1 was found to be absent in normal lung tissues and was overexpressed in a case of lung adenocarcinoma.


Assuntos
Adenocarcinoma/imunologia , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Antineoplásicos/imunologia , Proteínas de Arabidopsis/genética , Neoplasias Pulmonares/imunologia , Proteínas Nucleares/genética , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos/administração & dosagem , Proteínas de Arabidopsis/imunologia , Regiões Determinantes de Complementaridade/genética , Regiões Determinantes de Complementaridade/imunologia , Desenho de Fármacos , Sinergismo Farmacológico , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutagênese Sítio-Dirigida/métodos , Proteínas Nucleares/imunologia , Mutação Puntual/genética , Proto-Oncogene Mas , Proto-Oncogenes , Distribuição Tecidual , Células Tumorais Cultivadas
16.
Brain ; 138(Pt 9): 2553-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26121981

RESUMO

Upregulation of microRNA-21 (miR-21) is known to be strongly associated with the proliferation, invasion, and radio-resistance of glioma cells. However, the regulatory mechanism that governs the biogenesis of miR-21 in glioma is still unclear. Here, we demonstrate that the DEAD-box RNA helicase, DDX23, promotes miR-21 biogenesis at the post-transcriptional level. The expression of DDX23 was enhanced in glioma tissues compared to normal brain, and expression level of DDX23 was highly associated with poor survival of glioma patients. Specific knockdown of DDX23 expression suppressed glioma cell proliferation and invasion in vitro and in vivo, which is similar to the function of miR-21. We found that DDX23 increased the level of miR-21 by promoting primary-to-precursor processing of miR-21 through an interaction with the Drosha microprocessor. Mutagenesis experiments critically demonstrated that the helicase activity of DDX23 was essential for the processing (cropping) of miR-21, and we further found that ivermectin, a RNA helicase inhibitor, decreased miR-21 levels by potentially inhibiting DDX23 activity and blocked invasion and cell proliferation. Moreover, treatment of ivermectin decreased glioma growth in mouse xenografts. Taken together, these results suggest that DDX23 plays an essential role in glioma progression, and might thus be a potential novel target for the therapeutic treatment of glioma.


Assuntos
Neoplasias Encefálicas/metabolismo , RNA Helicases DEAD-box/metabolismo , Glioma/metabolismo , MicroRNAs/biossíntese , Animais , Antiparasitários/farmacologia , Neoplasias Encefálicas/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , RNA Helicases DEAD-box/genética , Bases de Dados Factuais/estatística & dados numéricos , Glioma/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Marcação In Situ das Extremidades Cortadas , Ivermectina/farmacologia , Camundongos , MicroRNAs/genética , RNA Interferente Pequeno/farmacologia , Transdução Genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biochim Biophys Acta ; 1839(5): 374-86, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24602972

RESUMO

let-7 microRNA (miRNA) is implicated in various biological processes, and its downregulation essentially linked to human malignancy. Regulation of gene expression of the let-7 family is critically linked to RNA-binding proteins. For instance, Lin28B and its paralog, Lin28A, inhibit the pre-let-7 precursor from being processed to mature miRNA by recruiting terminal uridyltransferase, TUT4, which adds oligomeric U at the 3' end, suggesting that deregulation of Lin28B, together with Lin28A, may alter various biological processes through modulation of let-7 expression. Here, we showed that the Lin28B protein level is regulated via ubiquitin-mediated proteasomal degradation, and identified the ubiquitin ligase as human TRIM-NHL domain-containing TRIM71. In cells, TRIM71 negatively regulates Lin28B protein stability by catalyzing polyubiquitination. Compared with its paralog, Lin28A, a C-terminal unique ~50 amino acid stretch of Lin28B is essential for TRIM71 interactions and subsequent polyubiquitination. Moreover, the N-terminal RING finger motif of TRIM71 is critical for protein-protein interactions and polyubiquitination of Lin28B, and consequent let-7 expression. Consistent with the let-7 stimulatory role of TRIM71 via Lin28B polyubiquitination, specific knockdown of TRIM71 led to downregulation of let-7 expression. Expression of one of the known let-7 targets, HMGA2, was derepressed after knockdown of TRIM71. We additionally showed that enhanced expression of let-7 is part of a feedback loop that targets TRIM71 3'UTR, which contains two conserved let-7 target sites. Our findings collectively reveal critical aspects of regulatory complexity of let-7 biogenesis at the posttranscriptional level.


Assuntos
MicroRNAs/biossíntese , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Ubiquitina-Proteína Ligases/genética , Regiões 3' não Traduzidas , Linhagem Celular , Regulação para Baixo , Expressão Gênica , Células HEK293 , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , MicroRNAs/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteólise , Domínios RING Finger , Proteínas de Ligação a RNA/metabolismo , Proteínas com Motivo Tripartido , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Nanotechnology ; 26(14): 145202, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25771907

RESUMO

We report the defect-mediated modulation of optical properties in vertically aligned ZnO nanowires via a substrate-assisted Ga incorporation method. We find that Ga atoms were incorporated into a ZnO lattice via the diffusion of liquid Ga droplets from a GaAs substrate in which as-grown ZnO nanowires were placed face down on the GaAs substrate and annealed at 650 °C. Based on structural and compositional characterization, it was confirmed that the substrate-assisted incorporation of Ga can induce a high defect density in vertically aligned ZnO nanowires grown on a Si substrate. In addition, distinct differences in optical properties between as-grown and Ga-incorporated ZnO nanowires were found and discussed in terms of defect-mediated modifications of energy band states, which were associated with the generation and recombination of photoexcited carriers. Furthermore, it was clearly observed that for Ga-incorporated ZnO nanowires, the photocurrent rise and decay processes were slower and the photocurrents under UV illumination were significantly higher compared with as-grown nanowires.

19.
Proteomics ; 14(12): 1494-502, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24729417

RESUMO

High-grade gliomas are one of the most common brain tumors and notorious for poor prognosis due to their malignant nature. Gliomas have an extensive area of hypoxia, which is critical for glioma progression by inducing aggressiveness and activating the angiogenesis process in the tumor microenvironment. To resolve the factors responsible for the highly malignant nature of gliomas, we comprehensively profiled the U373MG glioma cell secretome-exosome and soluble fraction under hypoxic and normoxic conditions. A total of 239 proteins were identified from the exosome and soluble fractions. Vascular endothelial growth factor, stanniocalcin 1 (STC1) and stanniocalcin 2, and insulin-like growth factor binding protein 3 and 6, enriched in the soluble fraction, and lysyl oxidase homolog 2 enriched in the exosomal fraction were identified as upregulated proteins by hypoxia based on a label-free quantitative analysis. STCs and insulin-like growth factor binding proteins, which were identified as secretory proteins under hypoxic conditions, were highly correlated with glioma grade in human patients by microarray analysis. An in vitro scratch wound assay revealed that STC1 and 2 have important functions in the induction of cell migration in a hypoxia-dependent manner, suggesting that they are hypoxia-dependent migration factors.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/metabolismo , Movimento Celular , Glioma/metabolismo , Hipóxia/fisiopatologia , Proteoma/análise , Biomarcadores Tumorais/genética , Western Blotting , Neoplasias Encefálicas/patologia , Proliferação de Células , Cromatografia Líquida/métodos , Exossomos/metabolismo , Glioma/patologia , Glicoproteínas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Gradação de Tumores , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem/métodos , Células Tumorais Cultivadas , Microambiente Tumoral
20.
Nano Lett ; 13(4): 1822-8, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23458034

RESUMO

We report a morphotropic phase transformation in vanadium dioxide (VO2) nanobeams annealed in a high-pressure hydrogen gas, which leads to the stabilization of metallic phases. Structural analyses show that the annealed VO2 nanobeams are hexagonal-close-packed structures with roughened surfaces at room temperature, unlike as-grown VO2 nanobeams with the monoclinic structure and with clean surfaces. Quantitative chemical examination reveals that the hydrogen significantly reduces oxygen in the nanobeams with characteristic nonlinear reduction kinetics which depend on the annealing time. Surprisingly, the work function and the electrical resistance of the reduced nanobeams follow a similar trend to the compositional variation due mainly to the oxygen-deficiency-related defects formed at the roughened surfaces. The electronic transport characteristics indicate that the reduced nanobeams are metallic over a large range of temperatures (room temperature to 383 K). Our results demonstrate the interplay between oxygen deficiency and structural/electronic phase transitions, with implications for engineering electronic properties in vanadium oxide systems.


Assuntos
Hidrogênio/química , Nanopartículas/química , Óxidos/química , Transição de Fase , Compostos de Vanádio/química , Cristalização , Condutividade Elétrica , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA