Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732828

RESUMO

While studying the aortic valve in isolation has facilitated the development of life-saving procedures and technologies, the dynamic interplay of the aortic valve and its surrounding structures is vital to preserving their function across the wide range of conditions encountered in an active lifestyle. Our view is that these structures should be viewed as an integrated functional unit, herein referred to as the aortic valve apparatus (AVA). The coupling of the aortic valve and root, left ventricular outflow tract, and blood circulation is crucial for AVA's functions: unidirectional flow out of the left ventricle, coronary perfusion, reservoir function, and supporting left ventricular function. In this review, we explore the multiscale biological and physical phenomena that underly the simultaneous fulfilment of these functions. A brief overview of the tools used to investigate the AVA is included, such as: medical imaging modalities, experimental methods, and computational modelling, specifically fluid-structure interaction (FSI) simulations, is included. Some pathologies affecting the AVA are explored, and insights are provided on treatments and interventions that aim to maintain quality of life. The concepts explained in this paper support the idea of AVA being an integrated functional unit and help identify unanswered research questions. Incorporating phenomena through the molecular, micro, meso and whole tissue scales is crucial for understanding the sophisticated normal functions and diseases of the AVA.

2.
Am J Physiol Heart Circ Physiol ; 317(3): H505-H516, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31225986

RESUMO

High wave speed and large wave reflection in the pulmonary artery have previously been reported in patients with chronic thromboembolic pulmonary hypertension (CTEPH). We assessed the impact of pulmonary endarterectomy (PEA) on pulmonary arterial wave propagation and reservoir function in patients with CTEPH. Right heart catheterization was performed using a combined pressure and Doppler flow sensor-tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in eight patients with CTEPH before and 3 mo after PEA. Wave intensity and reservoir-excess pressure analyses were then performed. Following PEA, mean pulmonary arterial pressure (PAPm; ∼49 vs. ∼32 mmHg), pulmonary vascular resistance (PVR; ∼11.1 vs. ∼5.1 Wood units), and wave speed (∼16.5 vs. ∼8.1 m/s), i.e., local arterial stiffness, markedly decreased. The changes in the intensity of the reflected arterial wave and wave reflection index (pre: ∼28%; post: ∼22%) were small, and patients post-PEA with and without residual pulmonary hypertension (i.e., PAPm ≥ 25 mmHg) had similar wave reflection index (∼20 vs. ∼23%). The reservoir and excess pressure decreased post-PEA, and the changes were associated with improved right ventricular afterload, function, and size. In conclusion, although PVR and arterial stiffness decreased substantially following PEA, large wave reflection persisted, even in patients without residual pulmonary hypertension, indicating lack of improvement in vascular impedance mismatch. This may continue to affect the optimal ventriculoarterial interaction, and further studies are warranted to determine whether this contributes to persistent symptoms in some patients.NEW & NOTEWORTHY We performed wave intensity analysis in the pulmonary artery in patients with chronic thromboembolic pulmonary hypertension before and 3 mo after pulmonary endarterectomy. Despite substantial reduction in pulmonary arterial pressures, vascular resistance, and arterial stiffness, large pulmonary arterial wave reflection persisted 3 mo postsurgery, even in patients without residual pulmonary hypertension, suggestive of lack of improvement in vascular impedance mismatch.


Assuntos
Pressão Arterial , Endarterectomia , Hipertensão Arterial Pulmonar/cirurgia , Artéria Pulmonar/cirurgia , Circulação Pulmonar , Embolia Pulmonar/cirurgia , Rigidez Vascular , Função Ventricular Direita , Idoso , Velocidade do Fluxo Sanguíneo , Estudos de Casos e Controles , Cateterismo de Swan-Ganz , Dinamarca , Feminino , Humanos , Londres , Masculino , Pessoa de Meia-Idade , Modelos Cardiovasculares , Hipertensão Arterial Pulmonar/diagnóstico , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Embolia Pulmonar/diagnóstico , Embolia Pulmonar/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia Doppler
3.
Am J Physiol Heart Circ Physiol ; 314(6): H1264-H1278, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29547024

RESUMO

Arterial stiffness and wave reflection are important components of the ventricular afterload. Therefore, we aimed to assess the arterial wave characteristics and mechanical properties of the proximal pulmonary arteries (PAs) in the hypoxic pulmonary hypertensive rat model. After 21 days in normoxic or hypoxic chambers (24 animals/group), animals underwent transthoracic echocardiography and PA catheterization with a dual-tipped pressure and Doppler flow sensor wire. Wave intensity analysis was performed. Artery rings obtained from the pulmonary trunk, right and left PAs, and aorta were subjected to a tensile test to rupture. Collagen and elastin content were determined. In hypoxic rats, proximal PA wall thickness, collagen content, tensile strength per unit collagen, maximal elastic modulus, and wall viscosity increased, whereas the elastin-to-collagen ratio and arterial distensibility decreased. Arterial pulse wave velocity was also increased, and the increase was more prominent in vivo than ex vivo. Wave intensity was similar in hypoxic and normoxic animals with negligible wave reflection. In contrast, the aortic maximal elastic modulus remained unchanged, whereas wall viscosity decreased. In conclusion, there was no evidence of altered arterial wave propagation in proximal PAs of hypoxic rats while the extracellular matrix protein composition was altered and collagen tensile strength increased. This was accompanied by altered mechanical properties in vivo and ex vivo. NEW & NOTEWORTHY In rats exposed to chronic hypoxia, we have shown that pulse wave velocity in the proximal pulmonary arteries increased and pressure dependence of the pulse wave velocity was steeper in vivo than ex vivo leading to a more prominent increase in vivo.


Assuntos
Pressão Arterial , Hipertensão Pulmonar/etiologia , Hipóxia/complicações , Artéria Pulmonar/fisiopatologia , Análise de Onda de Pulso , Rigidez Vascular , Animais , Aorta/patologia , Aorta/fisiopatologia , Fenômenos Biomecânicos , Doença Crônica , Colágeno/metabolismo , Modelos Animais de Doenças , Módulo de Elasticidade , Elastina/metabolismo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipóxia/metabolismo , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Modelos Cardiovasculares , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Ratos Sprague-Dawley , Resistência à Tração , Fatores de Tempo , Remodelação Vascular , Viscosidade
4.
J Physiol ; 595(20): 6463-6476, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28816352

RESUMO

KEY POINTS: Wave travel plays an important role in cardiovascular physiology. However, many aspects of pulmonary arterial wave behaviour remain unclear. Wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery in subjects with and without pulmonary hypertension during spontaneous respiration and dynamic stress tests. Arterial wave energy decreased during expiration and Valsalva manoeuvre due to decreased ventricular preload. Wave energy also decreased during handgrip exercise due to increased heart rate. In pulmonary hypertension patients, the asymptotic pressure at which the microvascular flow ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by waves increased. The reservoir and excess pressures decreased during Valsalva manoeuvre but remained unchanged during handgrip exercise. This study provides insights into the influence of pulmonary vascular disease, spontaneous respiration and dynamic stress tests on pulmonary artery wave propagation and reservoir function. ABSTRACT: Detailed haemodynamic analysis may provide novel insights into the pulmonary circulation. Therefore, wave intensity and reservoir-excess pressure analyses were applied in the pulmonary artery to characterize changes in wave propagation and reservoir function during spontaneous respiration and dynamic stress tests. Right heart catheterization was performed using a pressure and Doppler flow sensor tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in control subjects and patients with pulmonary arterial hypertension (PAH) at rest. In controls, recordings were also obtained during Valsalva manoeuvre and handgrip exercise. The asymptotic pressure at which the flow through the microcirculation ceases, the reservoir pressure related to arterial compliance and the excess pressure caused by arterial waves increased in PAH patients compared to controls. The systolic and diastolic rate constants also increased, while the diastolic time constant decreased. The forward compression wave energy decreased by ∼8% in controls and ∼6% in PAH patients during expiration compared to inspiration, while the wave speed remained unchanged throughout the respiratory cycle. Wave energy decreased during Valsalva manoeuvre (by ∼45%) and handgrip exercise (by ∼27%) with unaffected wave speed. Moreover, the reservoir and excess pressures decreased during Valsalva manoeuvre but remained unaltered during handgrip exercise. In conclusion, reservoir-excess pressure analysis applied to the pulmonary artery revealed distinctive differences between controls and PAH patients. Variations in the ventricular preload and afterload influence pulmonary arterial wave propagation as demonstrated by changes in wave energy during spontaneous respiration and dynamic stress tests.


Assuntos
Teste de Esforço , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Respiração , Idoso , Pressão Sanguínea , Feminino , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Manobra de Valsalva , Doenças Vasculares/fisiopatologia
5.
Artif Organs ; 41(7): 637-646, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27925228

RESUMO

A realistic mock circulatory system (MCS) could be a valuable in vitro testbed to study human circulatory hemodynamics. The objective of this study was to design a MCS replicating the pulmonary arterial circulation, incorporating an anatomically representative arterial model suitable for testing clinically relevant scenarios. A second objective of the study was to ensure the system's compatibility with magnetic resonance imaging (MRI) for additional measurements. A latex pulmonary arterial model with two generations of bifurcations was manufactured starting from a 3D-printed mold reconstructed from patient data. The model was incorporated into a MCS for in vitro hydrodynamic measurements. The setup was tested under physiological pulsatile flow conditions and results were evaluated using wave intensity analysis (WIA) to investigate waves traveling in the arterial system. Increased pulmonary vascular resistance (IPVR) was simulated as an example of one pathological scenario. Flow split between right and left pulmonary artery was found to be realistic (54 and 46%, respectively). No substantial difference in pressure waveform was observed throughout the various generations of bifurcations. Based on WIA, three main waves were identified in the main pulmonary artery (MPA), that is, forward compression wave, backward compression wave, and forward expansion wave. For IPVR, a rise in mean pressure was recorded in the MPA, within the clinical range of pulmonary arterial hypertension. The feasibility of using the MCS in the MRI scanner was demonstrated with the MCS running 2 h consecutively while acquiring preliminary MRI data. This study shows the development and verification of a pulmonary MCS, including an anatomically correct, compliant latex phantom. The setup can be useful to explore a wide range of hemodynamic questions, including the development of patient- and pathology-specific models, considering the ease and low cost of producing rapid prototyping molds, and the versatility of the setup for invasive and noninvasive (i.e., MRI) measurements.


Assuntos
Hemodinâmica , Pulmão/irrigação sanguínea , Artéria Pulmonar/anatomia & histologia , Artéria Pulmonar/fisiologia , Idoso , Circulação Extracorpórea/instrumentação , Humanos , Pulmão/anatomia & histologia , Imageamento por Ressonância Magnética , Masculino , Modelos Anatômicos , Modelos Cardiovasculares , Impressão Tridimensional , Circulação Pulmonar
7.
J Cardiovasc Magn Reson ; 18(1): 93, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27964736

RESUMO

BACKGROUND: Wave intensity analysis (WIA) of the coronary arteries allows description of the predominant mechanisms influencing coronary flow over the cardiac cycle. The data are traditionally derived from pressure and velocity changes measured invasively in the coronary artery. Cardiovascular magnetic resonance (CMR) allows measurement of coronary velocities using phase velocity mapping and derivation of central aortic pressure from aortic distension. We assessed the feasibility of WIA of the coronary arteries using CMR and compared this to invasive data. METHODS: CMR scans were undertaken in a serial cohort of patients who had undergone invasive WIA. Velocity maps were acquired in the proximal left anterior descending and proximal right coronary artery using a retrospectively-gated breath-hold spiral phase velocity mapping sequence with high temporal resolution (19 ms). A breath-hold segmented gradient echo sequence was used to acquire through-plane cross sectional area changes in the proximal ascending aorta which were used as a surrogate of an aortic pressure waveform after calibration with brachial blood pressure measured with a sphygmomanometer. CMR-derived aortic pressures and CMR-measured velocities were used to derive wave intensity. The CMR-derived wave intensities were compared to invasive data in 12 coronary arteries (8 left, 4 right). Waves were presented as absolute values and as a % of total wave intensity. Intra-study reproducibility of invasive and non-invasive WIA was assessed using Bland-Altman analysis and the intraclass correlation coefficient (ICC). RESULTS: The combination of the CMR-derived pressure and velocity data produced the expected pattern of forward and backward compression and expansion waves. The intra-study reproducibility of the CMR derived wave intensities as a % of the total wave intensity (mean ± standard deviation of differences) was 0.0 ± 6.8%, ICC = 0.91. Intra-study reproducibility for the corresponding invasive data was 0.0 ± 4.4%, ICC = 0.96. The invasive and CMR studies showed reasonable correlation (r = 0.73) with a mean difference of 0.0 ± 11.5%. CONCLUSION: This proof of concept study demonstrated that CMR may be used to perform coronary WIA non-invasively with reasonable reproducibility compared to invasive WIA. The technique potentially allows WIA to be performed in a wider range of patients and pathologies than those who can be studied invasively.


Assuntos
Circulação Coronária , Vasos Coronários/diagnóstico por imagem , Cardiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Adulto , Aorta/diagnóstico por imagem , Aorta/fisiopatologia , Pressão Arterial , Velocidade do Fluxo Sanguíneo , Suspensão da Respiração , Calibragem , Vasos Coronários/fisiopatologia , Inglaterra , Estudos de Viabilidade , Feminino , Cardiopatias/fisiopatologia , Humanos , Imagem Cinética por Ressonância Magnética/normas , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
8.
Artif Organs ; 40(6): 549-60, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26611518

RESUMO

The aim of this study was to elucidate the dynamic characteristics of the Thoratec HeartMate II (HMII) and the HeartWare HVAD (HVAD) left ventricular assist devices (LVADs) under clinically representative in vitro operating conditions. The performance of the two LVADs were compared in a normothermic, human blood-filled mock circulation model under conditions of steady (nonpulsatile) flow and under simulated physiologic conditions. These experiments were repeated using 5% dextrose in order to determine its suitability as a blood analog. Under steady flow conditions, for the HMII, approximately linear inverse LVAD differential pressure (H) versus flow (Q) relationships were observed with good correspondence between the results of blood and 5% dextrose under all conditions except at a pump speed of 9000 rpm. For the HVAD, the corresponding relationships were inverse curvilinear and with good correspondence between the blood-derived and 5% dextrose-derived relationships in the flow rate range of 2-6 L/min and at pump speeds up to 3000 rpm. Under pulsatile operating conditions, for each LVAD operating at a particular pump speed, an counterclockwise loop was inscribed in the HQ domain during a simulated cardiac cycle (HQ loop); this showed that there was a variable phase relationship between LVAD differential pressure and LVAD flow. For both the HMII and HVAD, increasing pump speed was associated with a right-hand and upward shift of the HQ loop and simulation of impairment of left ventricular function was associated with a decrease in loop area. During clinical use, not only does the pressure differential across the LVAD and its flow rate vary continuously, but their phase relationship is variable. This behavior is inadequately described by the widely accepted representation of a plot of pressure differential versus flow derived under steady conditions. We conclude that the dynamic HQ loop is a more meaningful representation of clinical operating conditions than the widely accepted steady flow HQ curve.


Assuntos
Coração Auxiliar , Fluxo Pulsátil , Simulação por Computador , Hemodinâmica , Humanos , Hidrodinâmica , Modelos Cardiovasculares , Pressão , Função Ventricular Esquerda
9.
Pulm Circ ; 14(1): e12345, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38348196

RESUMO

Wave intensity analysis (WIA) uses simultaneous changes in pressure and flow velocity to determine wave energy, type, and timing of traveling waves in the circulation. In this study, we characterized wave propagation in the pulmonary artery in patients with pulmonary hypertension associated with left-sided heart disease (PHLHD) and the effects of dobutamine. During right heart catheterization, pressure and velocity data were acquired using a dual-tipped pressure and Doppler flow sensor wire (Combowire; Phillips Volcano), and processed offline using customized Matlab software (MathWorks). Patients with low cardiac output underwent dobutamine challenge. Twenty patients with PHLHD (all heart failure with reduced left ventricular ejection fraction) were studied. Right ventricular systole produced a forward compression wave (FCW), followed by a forward decompression wave (FDW) during diastole. Wave reflection manifesting as backward compression wave (BCW) following the FCW was observed in 14 patients. Compared to patients without BCW, patients with BCW had higher mean pulmonary artery pressure (28.7 ± 6.12 vs. 38.6 ± 6.5 mmHg, p = 0.005), and lower pulmonary arterial capacitance (PAC: 2.88 ± 1.75 vs. 1.73 ± 1.16, p = 0.002). Pulmonary vascular resistance was comparable. Mean pulmonary artery pressure of 34.5 mmHg (area under the curve [AUC]: 0.881) and PAC of 2.29 mL/mmHg (AUC: 0.833) predicted BCW. The magnitude of the FCW increased with dobutamine (n = 11) and correlated with pulmonary artery wedge pressure. Wave reflection in PHLHD is more likely at higher pulmonary artery pressures and lower PAC and the magnitude of reflected waves correlated with pulmonary artery wedge pressure. Dobutamine increased FCW but did not affect wave reflection.

10.
ESC Heart Fail ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946623

RESUMO

AIMS: Parameters derived from reservoir-excess pressure analysis have been demonstrated to predict cardiovascular events. Thus, altered reservoir-excess pressure parameters could have a detrimental effect on highly-perfused organs like the heart. We aimed to cross-sectionally determine whether reservoir-excess pressure parameters were associated with N-terminal pro-brain-type natriuretic peptide (NT-proBNP) in older adults. METHODS: We studied 868 older adults with diverse cardiovascular risk. Reservoir-excess pressure parameters were obtained through radial artery tonometry including reservoir pressure integral, peak reservoir pressure, excess pressure integral (INTXSP), systolic rate constant (SRC) and diastolic rate constant (DRC). Plasma levels of NT-proBNP, as a biomarker of cardiac overload, were analysed by the Proximity Extension Assay technology. RESULTS: Multivariable linear regression analyses revealed that all reservoir-excess pressure parameters studied were associated with NT-proBNP after adjusting for age and sex. After further adjustments for conventional cardiovascular risk factors, INTXSP [ß = 0.191 (95% confidence interval, CI: 0.099, 0.283), P < 0.001], SRC [ß = -0.080 (95% CI: -0.141, -0.019), P = 0.010] and DRC [ß = 0.138 (95% CI: 0.073, 0.202), P < 0.001] remained associated with NT-proBNP. Sensitivity analysis found that there were occasions where the association between SRC and NT-proBNP was attenuated, but both INTXSP and DRC remained consistently associated with NT-proBNP. CONCLUSIONS: The observed associations between reservoir-excess pressure parameters and NT-proBNP suggest that altered reservoir-excess pressure parameters may reflect an increased load inflicted on the left ventricular cardiomyocytes and could have a potential to be utilized in the clinical setting for cardiovascular risk stratification.

11.
J Math Biol ; 67(6-7): 1487-506, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23053537

RESUMO

The ductus arteriosus is one of several shunts in the cardiovascular system. It is a small vessel connecting the aortic arch and pulmonary artery that allows blood to bypass the pulmonary circulation. It is open during foetal development because the foetal lungs cannot function and oxygenation of the blood occurs by exchange with the maternal blood in the placenta. Normally it closes a few days after birth; however, in a small number of people closure does not occur, leading to a condition known as patent ductus arteriosus. In this paper our aim is to investigate the resulting cardiovascular effects. We develop a mathematical model of the haemodynamics in three different idealised geometries by assuming that the entry flow is irrotational and remains so in the core until at least the shunt position. We argue that separation or diffusion of vorticity into the core flow is delayed due to the high frequency associated with the pulsatile component of the flow profile. The analysis uses complex potential theory, Schwarz-Christoffel transformations, conformal mappings and Fourier series. The main results are based on the assumption that the flow in patients with patent ductus arteriosus is similar to the flow in healthy adults, and we apply this assumption using boundary conditions that are representative of physiological values in healthy adults. The model suggests that the pressures in the aorta and pulmonary artery are likely to equalise, that the shear stress increases near the edges of the shunt and that backflow of large volumes may occur from the pulmonary artery into the aorta or towards the ventricles due to the presence of the patent shunt. Our results strongly suggest that an abnormal compensatory physiology develops in patients with patent ductus arteriosus.


Assuntos
Aorta/fisiopatologia , Permeabilidade do Canal Arterial/fisiopatologia , Modelos Cardiovasculares , Artéria Pulmonar/fisiopatologia , Hemodinâmica/fisiologia , Humanos
12.
J Appl Physiol (1985) ; 135(4): 840-848, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37616336

RESUMO

The aortic root (AR) performs sophisticated functions regulating the blood dynamics during the cardiac cycle. Such complex function depends on the nature of flow in the AR. Here, we investigate the potential of new quantitative parameters of flow asymmetry that could have clinical implications. We developed a MATLAB program to study the AR hemodynamics in each sinus of Valsalva using two-dimensional (2-D) cardiac magnetic resonance imaging during systole and particularly at peak systolic flow in 13 healthy volunteers and compared with 10 patients with hypertrophic obstructive cardiomyopathy (HOCM). We show that the effective area of the aortic jet in healthy volunteers is significantly higher at peak systolic flow and on average during systole. The flow asymmetry index, indicating how the jet is skewed away from the left coronary sinus (LCS), is small in healthy volunteers and much larger in HOCM at peak systole. The average of this index over systole is significantly more different between cohorts. Looking in more detail at the flow in the sinuses during systole, we show that the AR jet in healthy volunteers is more symmetrical, affecting the three sinuses almost equally, unlike the asymmetric AR jet in patients with HOCM that has decreased flow rate in the LCS and increased fractional area of backward flow in the LCS. The percentage of backward flow in the sinuses of Valsalva calculated over systole is a potential indicator of perturbed AR hemodynamics and the distribution of vortical flow and could be used as a measure of flow asymmetry.NEW & NOTEWORTHY The aortic root is a vital organ responsible for performing sophisticated functions to regulate the blood flow dynamics during the cardiac cycle. Such synchronized complex performance affects and is affected by the flow symmetry and type of flow reaching the aorta. Here, we report flow asymmetry in the aortic root which could have clinical implications, and we investigate the potential of various quantitative parameters as measures of flow asymmetry in hypertrophic obstructive cardiomyopathy.


Assuntos
Aorta Torácica , Cardiomiopatia Hipertrófica , Humanos , Sístole , Hemodinâmica , Aorta
13.
R Soc Open Sci ; 10(6): 230065, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37351500

RESUMO

This study investigated the possibility of using low-cost, handheld, retinal imaging devices for the automatic extraction of quantifiable measures of retinal blood vessels. Initially, the available handheld devices were compared using a Zeiss model eye incorporating a USAF resolution test chart to assess their optical properties. The only suitable camera of the five evaluated was the Horus DEC 200. This device was then subjected to a detailed evaluation in which images in human eyes taken from the handheld camera were compared in a quantitative analysis with those of the same eye from a Canon CR-DGi retinal desktop camera. We found that the Horus DEC 200 exhibited shortcomings in capturing images of human eyes by comparison with the Canon. More images were rejected as being unevaluable or suffering failures in automatic segmentation than with the Canon, and even after exclusion of affected images, the Horus yielded lower measurements of vessel density than the Canon. A number of issues affecting handheld cameras in general and some features of the Horus in particular have been identified that might contribute to the observed differences in performance. Some potential mitigations are discussed which might yield improvements in performance, thus potentially facilitating use of handheld retinal imaging devices for quantitative retinal microvascular measurements.

14.
Environ Pollut ; 327: 121585, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37040831

RESUMO

Urbanisation and associated anthropogenic activities release large quantities of toxic metals and metalloids into the environment, where they may bioaccumulate and threaten both wildlife and human health. In highly transformed landscapes, terrestrial carnivores may be at increased risk of exposure through biomagnification. We quantified metallic element and metalloid exposure in blood of caracals (Caracal caracal), an adaptable felid inhabiting the rapidly urbanising, coastal metropole of Cape Town, South Africa. Using redundancy analysis and mixed-effect models, we explored the influence of demography, landscape use, and diet on the concentration of 11 metals and metalloids. Although species-specific toxic thresholds are lacking, arsenic (As) and chromium (Cr) were present at potentially sublethal levels in several individuals. Increased use of human-transformed landscapes, particularly urban areas, roads, and vineyards, was significantly associated with increased exposure to aluminium (Al), cobalt (Co) and lead (Pb). Foraging closer to the coast and within aquatic food webs was associated with increased levels of mercury (Hg), selenium (Se) and arsenic, where regular predation on seabirds and waterbirds likely facilitates transfer of metals from aquatic to terrestrial food webs. Further, several elements were linked to lower haemoglobin levels (chromium, mercury, manganese, and zinc) and elevated levels of infection-fighting cells (mercury and selenium). Our results highlight the importance of anthropogenic activities as major environmental sources of metal contamination in terrestrial wildlife, including exposure across the land-ocean continuum. These findings contribute towards the growing evidence suggesting cities are particularly toxic areas for wildlife. Co-exposure to a suite of metal pollutants may threaten the long-term health and persistence of Cape Town's caracal population in unexpected ways, particularly when interacting with additional known pollutant and pathogen exposure. The caracal is a valuable sentinel for assessing metal exposure and can be used in pollution monitoring programmes to mitigate exposure and promote biodiversity conservation in human-dominated landscapes.


Assuntos
Arsênio , Poluentes Ambientais , Mercúrio , Metaloides , Metais Pesados , Selênio , Animais , Humanos , Arsênio/análise , Selênio/análise , África do Sul , Metais/análise , Mercúrio/análise , Poluentes Ambientais/análise , Cromo/análise , Metaloides/análise , Animais Selvagens , Oceanos e Mares , Metais Pesados/análise , Monitoramento Ambiental
15.
Circulation ; 124(14): 1565-72, 2011 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-21911781

RESUMO

BACKGROUND: Aortic stenosis causes angina despite unobstructed arteries. Measurement of conventional coronary hemodynamic parameters in patients undergoing valvular surgery has failed to explain these symptoms. With the advent of percutaneous aortic valve replacement (PAVR) and developments in coronary pulse wave analysis, it is now possible to instantaneously abolish the valvular stenosis and to measure the resulting changes in waves that direct coronary flow. METHODS AND RESULTS: Intracoronary pressure and flow velocity were measured immediately before and after PAVR in 11 patients with unobstructed coronary arteries. Using coronary pulse wave analysis, we calculated the intracoronary diastolic suction wave (the principal accelerator of coronary blood flow). To test physiological reserve to increased myocardial demand, we measured at resting heart rate and during pacing at 90 and 120 bpm. Before PAVR, the basal myocardial suction wave intensity was 1.9±0.3×10(-5) W · m(-2) · s(-2), and this increased in magnitude with increasing severity of aortic stenosis (r=0.59, P=0.05). This wave decreased markedly with increasing heart rate (ß coefficient=-0.16×10(-4) W · m(-2) · s(-2); P<0.001). After PAVR, despite a fall in basal suction wave (1.9±0.3 versus 1.1±0.1×10(-5) W · m(-2) · s(-2); P=0.02), there was an immediate improvement in coronary physiological reserve with increasing heart rate (ß coefficient=0.9×10(-3) W · m(-2) · s(-2); P=0.014). CONCLUSIONS: In aortic stenosis, the coronary physiological reserve is impaired. Instead of increasing when heart rate rises, the coronary diastolic suction wave decreases. Immediately after PAVR, physiological reserve returns to a normal positive pattern. This may explain how aortic stenosis can induce anginal symptoms and their prompt relief after PAVR. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT01118442.


Assuntos
Angina Pectoris/etiologia , Estenose da Valva Aórtica/complicações , Valva Aórtica/cirurgia , Circulação Coronária , Implante de Prótese de Valva Cardíaca , Idoso , Idoso de 80 Anos ou mais , Angina Pectoris/fisiopatologia , Estenose da Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/cirurgia , Diástole , Feminino , Frequência Cardíaca , Implante de Prótese de Valva Cardíaca/métodos , Hemodinâmica , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Estudos Prospectivos , Fluxo Pulsátil
16.
J Cardiovasc Magn Reson ; 14: 57, 2012 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-22876747

RESUMO

BACKGROUND: Wave intensity analysis, traditionally derived from pressure and velocity data, can be formulated using velocity and area. Flow-velocity and area can both be derived from high-resolution phase-contrast cardiovascular magnetic resonance (PC-CMR). In this study, very high temporal resolution PC-CMR data is processed using an integrated and semi-automatic technique to derive wave intensity. METHODS: Wave intensity was derived in terms of area and velocity changes. These data were directly derived from PC-CMR using a breath-hold spiral sequence accelerated with sensitivity encoding (SENSE). Image processing was integrated in a plug-in for the DICOM viewer OsiriX, including calculations of wave speed and wave intensity. Ascending and descending aortic data from 15 healthy volunteers (30 ± 6 years) data were used to test the method for feasibility, and intra- and inter-observer variability. Ascending aortic data were also compared with results from 15 patients with coronary heart disease (61 ± 13 years) to assess the clinical usefulness of the method. RESULTS: Rapid image acquisition (11 s breath-hold) and image processing was feasible in all volunteers. Wave speed was physiological (5.8 ± 1.3 m/s ascending aorta, 5.0 ± 0.7 m/s descending aorta) and the wave intensity pattern was consistent with traditionally formulated wave intensity. Wave speed, peak forward compression wave in early systole and peak forward expansion wave in late systole at both locations exhibited overall good intra- and inter-observer variability. Patients with coronary heart disease had higher wave speed (p <0.0001), and lower forward compression wave (p <0.0001) and forward expansion wave (p <0.0005) peaks. This difference is likely related to the older age of the patients' cohort, indicating stiffer aortas, as well as compromised ventricular function due to their underlying condition. CONCLUSION: A non-invasive, semi-automated and reproducible method for performing wave intensity analysis is presented. Its application is facilitated by the use of a very high temporal resolution spiral sequence. A formulation of wave intensity based on area change has also been proposed, involving no assumptions about the cross-sectional shape of the vessel.


Assuntos
Aorta/fisiopatologia , Doença da Artéria Coronariana/diagnóstico , Imageamento por Ressonância Magnética , Análise de Onda de Pulso/métodos , Rigidez Vascular , Adulto , Idoso , Automação Laboratorial , Velocidade do Fluxo Sanguíneo , Suspensão da Respiração , Estudos de Casos e Controles , Doença da Artéria Coronariana/fisiopatologia , Estudos de Viabilidade , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Fluxo Sanguíneo Regional , Reprodutibilidade dos Testes , Adulto Jovem
17.
Front Physiol ; 13: 866045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399267

RESUMO

Background: The arterial pressure waveform reflects the interaction between the heart and the arterial system and carries potentially relevant information about circulatory status. According to the commonly accepted 'wave transmission model', the net BP waveform results from the super-position of discrete forward and backward pressure waves, with the forward wave in systole determined mainly by the left ventricular (LV) ejection function and the backward by the wave reflection from the periphery, the timing and amplitude of which depend on arterial stiffness, the wave propagation speed and the extent of downstream admittance mismatching. However, this approach obscures the 'Windkessel function' of the elastic arteries. Recently, a 'reservoir-excess pressure' model has been proposed, which interprets the arterial BP waveform as a composite of a volume-related 'reservoir' pressure and a wave-related 'excess' pressure. Methods: In this study we applied the reservoir-excess pressure approach to the analysis of carotid arterial pressure waveforms (applanation tonometry) in 10 young healthy volunteers before and after a 5-week head down tilt bed rest which induced a significant reduction in stroke volume (SV), end-diastolic LV volume and LV longitudinal function without significant changes in central blood pressure, cardiac output, total peripheral resistance and aortic stiffness. Forward and backward pressure components were also determined by wave separation analysis. Results: Compared to the baseline state, bed rest induced a significant reduction in LV ejection time (LVET), diastolic time (DT), backward pressure amplitude (bP) and pressure reservoir integral (INTPR). INTPR correlated directly with LVET, DT, time to the peak of backward wave (bT) and stroke volume, while excess pressure integral (INTXSP) correlated directly with central pressure. Furthermore, Δ.INTPR correlated directly with Δ.LVET, and Δ.DT, and in multivariate analysis INTPR was independently related to LVET and DT and INTXSP to central systolic BP. Conclusion: This is an hypothesis generating paper which adds support to the idea that the reservoir-wave hypothesis applied to non-invasively obtained carotid pressure waveforms is of potential clinical usefulness.

19.
Hypertension ; 79(10): 2364-2372, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35993228

RESUMO

BACKGROUND: Arterial hemodynamic parameters derived from reservoir-excess pressure analysis exhibit prognostic utility. Reservoir-excess pressure analysis may provide useful information about an influence of altered hemodynamics on target organ such as the kidneys. We determined whether the parameters derived from the reservoir-excess pressure analysis were associated with the reduction in estimated glomerular filtration rate in 542 older adults (69.4±7.9 years, 194 females) at baseline and after 3 years. METHODS: Reservoir-excess pressure parameters, including reservoir pressure integral, excess pressure integral, systolic, and diastolic rate constants, were obtained by radial artery tonometry. RESULTS: After 3 years, and in a group of 94 individuals (72.4±7.6 years, 26 females), there was an estimated glomerular filtration rate reduction of >5% per year (median reduction of 20.5% over 3 years). A multivariable logistic regression analysis revealed that higher baseline reservoir pressure integral was independently associated with a smaller reduction in estimated glomerular filtration rate after accounting for conventional cardiovascular risk factors and study centers (odds ratio: 0.660 [95% CIs, 0.494-0.883]; P=0.005). The association remained unchanged after further adjustments for potential confounders and baseline renal function (odds ratio: 0.528 [95% CIs, 0.351-0.794]; P=0.002). No other reservoir-excess pressure parameters exhibited associations with the reduction in renal function. CONCLUSIONS: This study demonstrates that baseline reservoir pressure integral was associated with the decline in renal function in older adults at 3-year follow-up, independently of conventional cardiovascular risk factors. This suggests that reservoir pressure integral may play a role in the functional decline of the kidneys.


Assuntos
Hipertensão , Idoso , Pressão Sanguínea , Feminino , Taxa de Filtração Glomerular , Humanos , Rim/fisiologia , Artéria Radial
20.
Phys Chem Chem Phys ; 13(12): 5298-303, 2011 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-21344092

RESUMO

The behaviour of droplets entering a microfluidic chamber designed to house microelectrode detectors for real time analysis of clinical microdialysate is described. We have designed an analysis chamber to collect the droplets produced by multiphase flows of oil and artificial cerebral spinal fluid. The coalescence chamber creates a constant aqueous environment ideal for the placement of microelectrodes avoiding the contamination of the microelectrode surface by oil. A stream of alternating light and dark coloured droplets were filmed as they passed through the chamber using a high speed camera. Image analysis of these videos shows the colour change evolution at each point along the chamber length. The flow in the chamber was simulated using the general solution for Poiseuille flow in a rectangular chamber. It is shown that on the centre line the velocity profile is very close to parabolic, and an expression is presented for the ratio between this centre line velocity and the mean flow velocity as a function of channel aspect ratio. If this aspect ratio of width/height is 2, the ratio of flow velocities closely matches that of Poiseuille flow in a circular tube, with implications for connections between microfluidic channels and connection tubing. The droplets are well mixed as the surface tension at the interface with the oil dominates the viscous forces. However once the droplet coalesces with the solution held in the chamber, the no-slip condition at the walls allows Poiseuille flow to take over. The meniscus at the back of the droplet continues to mix the droplet and acts as a piston until the meniscus stops moving. We have found that the no-slip conditions at the walls of the chamber, create a banding effect which records the history of previous drops. The optimal position for sensors is to be placed at the plane of droplet coalescence ideally at the centre of the channel, where there is an abrupt concentration change leading to a response time ≪16 ms, the compressed frame rate of the video. Further away from this point the response time and sensitivity decrease due to convective dispersion.


Assuntos
Microfluídica/instrumentação , Dimetilpolisiloxanos/química , Microeletrodos , Microfluídica/métodos , Modelos Teóricos , Nylons/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA