Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Trends Immunol ; 38(7): 498-512, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28549714

RESUMO

Multiple sclerosis (MS) is a T cell driven autoimmune disease of the central nervous system (CNS). Despite its association with Epstein-Barr Virus (EBV), how viral infections promote MS remains unclear. However, there is increasing evidence that the CNS is continuously surveyed by virus-specific T cells, which protect against reactivating neurotropic viruses. Here, we discuss how viral infections could lead to the breakdown of self-tolerance in genetically predisposed individuals, and how the reactivations of viruses in the CNS could induce the recruitment of both autoaggressive and virus-specific T cell subsets, causing relapses and progressive disability. A disturbed immune surveillance in MS would explain several experimental findings, and has important implications for prognosis and therapy.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/imunologia , Interações Hospedeiro-Patógeno/imunologia , Vigilância Imunológica , Mimetismo Molecular/imunologia , Esclerose Múltipla/virologia , Movimento Celular , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/virologia , Citocinas/genética , Citocinas/imunologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/imunologia , Regulação da Expressão Gênica , Interação Gene-Ambiente , Predisposição Genética para Doença , Herpesvirus Humano 4/patogenicidade , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/imunologia , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Células Th1/imunologia , Células Th1/virologia , Células Th17/imunologia , Células Th17/virologia
2.
Pharmacol Res ; 159: 104962, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32480001

RESUMO

This review tackles the concept of the evolutionary mismatch, in relation with the reduction of the prevalence of the so-called "dirty old friends". These formed the variegated community of parasites and microorganisms, either prokaryotic or eukaryotic, that, over long evolutionary times, co-evolved with humans and their ancestors, inhabiting their digestive tracts, and other body districts. This community of microbial symbionts and metazoan parasites is thought to have evolved a complex network of inter-independence with the host, in particular in relation with their immune stimulating capacity, and with the consequent adaptation of the host immune response to this chronic stimulation. Strictly related to this evolutionary mismatch, the hygiene hypothesis, proposed by David Strachan in 1989, foresees that the increase in the incidence of inflammatory and autoimmune disorders during the twentieth century has been caused by the reduced exposure to parasites and microorganisms, especially in industrialized countries. Among these pathologies, inflammatory bowel diseases (IBDs) occupy a prominent role. From these premises, this review summarizes current knowledge on how variations in the composition of the gut bacterial microbiota, as well as its interactions with fungal communities, influence the overall immune balance, favouring or counteracting gut inflammation in IBDs. Additionally, the effect of worm parasites, either directly on the immune balance, or indirectly, through the modulation of bacterial and fungal microbiota, will be addressed. Finally, we will review a series of studies related to the use of molecules derived from parasitic worms and fungi, which hold the potential to be developed as postbiotics for the treatment of IBDs.


Assuntos
Fungos/patogenicidade , Hipótese da Higiene , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/parasitologia , Intestinos/microbiologia , Intestinos/parasitologia , Parasitos/patogenicidade , Animais , Evolução Biológica , Fungos/imunologia , Microbioma Gastrointestinal , Interações Hospedeiro-Parasita , Humanos , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/terapia , Intestinos/imunologia , Parasitos/imunologia , Fatores de Risco
3.
Pharmacol Res ; 161: 105288, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33160070

RESUMO

Leishmaniases are severe vector-borne diseases affecting humans and animals, caused by Leishmania protozoans. Over one billion people and millions of dogs live in endemic areas for leishmaniases and are at risk of infection. Immune polarization plays a major role in determining the outcome of Leishmania infections: hosts displaying M1-polarized macrophages are protected, while those biased on the M2 side acquire a chronic infection that could develop into a deadly disease. The identification of the factors involved in M1 polarization is essential for the design of therapeutic and prophylactic interventions, including vaccines. Infection by the filarial nematode Dirofilaria immitis could be one of the factors that interfere with leishmaniasis in dogs. Indeed, filarial nematodes induce a partial skew of the immune response towards M1, likely caused by their bacterial endosymbionts, Wolbachia. Here we have examined the potential of AsaiaWSP, a bacterium engineered for the expression of the Wolbachia surface protein (WSP), as an inductor of M1 macrophage activation and Leishmania killing. Macrophages stimulated with AsaiaWSP displayed a strong leishmanicidal activity, comparable to that determined by the choice-drug amphotericin B. Additionally, AsaiaWSP determined the expression of markers of classical macrophage activation, including M1 cytokines, ROS and NO, and an increase in phagocytosis activity. Asaia not expressing WSP also induced macrophage activation, although at a lower extent compared to AsaiaWSP. In summary, the results of the present study confirm the immunostimulating properties of WSP highlighting a potential therapeutic efficacy against Leishmania parasites. Furthermore, Asaia was designed as a delivery system for WSP, thus developing a novel type of immunomodulating agent, worthy of being investigated for immuno-prophylaxis and -therapy of leishmaniases and other diseases that could be subverted by M1 macrophage activation.


Assuntos
Acetobacteraceae/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Imunidade Inata , Leishmania infantum/imunologia , Vacinas contra Leishmaniose/imunologia , Ativação de Macrófagos , Macrófagos/microbiologia , Macrófagos/parasitologia , Acetobacteraceae/genética , Acetobacteraceae/metabolismo , Animais , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Citocinas/metabolismo , Vetores Genéticos , Interações Hospedeiro-Parasita , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/ultraestrutura , Vacinas contra Leishmaniose/genética , Vacinas contra Leishmaniose/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fagocitose , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Vacinas de DNA/imunologia
4.
Mar Drugs ; 18(8)2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32781644

RESUMO

Collagen-based skin-like scaffolds (CBSS) are promising alternatives to skin grafts to repair wounds and injuries. In this work, we propose that the common marine invertebrate sea urchin represents a promising and eco-friendly source of native collagen to develop innovative CBSS for skin injury treatment. Sea urchin food waste after gonad removal was here used to extract fibrillar glycosaminoglycan (GAG)-rich collagen to produce bilayer (2D + 3D) CBSS. Microstructure, mechanical stability, permeability to water and proteins, ability to exclude bacteria and act as scaffolding for fibroblasts were evaluated. Our data show that the thin and dense 2D collagen membrane strongly reduces water evaporation (less than 5% of water passes through the membrane after 7 days) and protein diffusion (less than 2% of BSA passes after 7 days), and acts as a barrier against bacterial infiltration (more than 99% of the different tested bacterial species is retained by the 2D collagen membrane up to 48 h), thus functionally mimicking the epidermal layer. The thick sponge-like 3D collagen scaffold, structurally and functionally resembling the dermal layer, is mechanically stable in wet conditions, biocompatible in vitro (seeded fibroblasts are viable and proliferate), and efficiently acts as a scaffold for fibroblast infiltration. Thus, thanks to their chemical and biological properties, CBSS derived from sea urchins might represent a promising, eco-friendly, and economically sustainable biomaterial for tissue regenerative medicine.


Assuntos
Colágenos Fibrilares/farmacologia , Fibroblastos/fisiologia , Medicina Regenerativa , Ouriços-do-Mar/química , Alimentos Marinhos , Pele Artificial , Alicerces Teciduais , Resíduos , Animais , Técnicas de Cultura de Células , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Cricetinae , Colágenos Fibrilares/química , Colágenos Fibrilares/isolamento & purificação , Fibroblastos/metabolismo , Manipulação de Alimentos
5.
J Allergy Clin Immunol ; 142(5): 1537-1547.e8, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29369775

RESUMO

BACKGROUND: IL-10 is an anti-inflammatory cytokine required for intestinal immune homeostasis. It mediates suppression of T-cell responses by type 1 regulatory T (TR1) cells but is also produced by CD25+ regulatory T (Treg) cells. OBJECTIVE: We aimed to identify and characterize human intestinal TR1 cells and to investigate whether they are a relevant cellular source of IL-10 in patients with inflammatory bowel diseases (IBDs). METHODS: CD4+ T cells isolated from the intestinal lamina propria of human subjects and mice were analyzed for phenotype, cytokine production, and suppressive capacities. Intracellular IL-10 expression by CD4+ T-cell subsets in the inflamed guts of patients with IBD (Crohn disease or ulcerative colitis) was compared with that in cells from noninflamed control subjects. Finally, the effects of proinflammatory cytokines on T-cell IL-10 expression were analyzed, and IL-1ß and IL-23 responsiveness was assessed. RESULTS: Intestinal TR1 cells could be identified by coexpression of CCR5 and programmed cell death protein 1 (PD-1) in human subjects and mice. CCR5+PD-1+ TR1 cells expressed IFN-γ and efficiently suppressed T-cell proliferation and transfer colitis. Intestinal IFN-γ+ TR1 cells, but not IL-7 receptor-positive TH cells or CD25+ Treg cells, showed lower IL-10 expression in patients with IBDs. TR1 cells were responsive to IL-23, and IFN-γ+ TR1 cells downregulated IL-10 with IL-1ß and IL-23. Conversely, CD25+ Treg cells expressed higher levels of IL-1 receptor but showed stable IL-10 expression. CONCLUSIONS: We provide the first ex vivo characterization of human intestinal TR1 cells. Selective downregulation of IL-10 by IFN-γ+ TR1 cells in response to proinflammatory cytokines is likely to drive excessive intestinal inflammation in patients with IBDs.


Assuntos
Citocinas/imunologia , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Receptor de Morte Celular Programada 1/imunologia , Receptores CCR5/imunologia , Linfócitos T Reguladores/imunologia , Adulto , Idoso , Animais , Células Cultivadas , Neoplasias do Colo/imunologia , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Adulto Jovem
6.
J Biol Chem ; 292(7): 2903-2915, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28077577

RESUMO

Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response.


Assuntos
Doenças Autoimunes/genética , Linfócitos T CD4-Positivos/citologia , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , Subpopulações de Linfócitos T , Doenças Autoimunes/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Cultivadas , Etanercepte/uso terapêutico , Humanos , MicroRNAs/sangue , Psoríase/sangue , Psoríase/tratamento farmacológico , Psoríase/genética
7.
J Allergy Clin Immunol ; 140(3): 797-808, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28237728

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) that is caused by autoreactive T cells and associated with viral infections. However, the phenotype of pathogenic T cells in peripheral blood remains to be defined, and how viruses promote MS is debated. OBJECTIVE: We aimed to identify and characterize potentially pathogenic autoreactive T cells, as well as protective antiviral T cells, in patients with MS. METHODS: We analyzed CD4+ helper T-cell subsets from peripheral blood or cerebrospinal fluid for cytokine production, gene expression, plasticity, homing potentials, and their reactivity to self-antigens and viral antigens in healthy subjects and patients with MS. Moreover, we monitored their frequencies in untreated and fingolimod- or natalizumab-treated patients with MS. RESULTS: TH1/TH17 central memory (TH1/TH17CM) cells were selectively increased in peripheral blood of patients with relapsing-remitting MS with a high disease score. TH1/TH17CM cells were closely related to conventional TH17 cells but had more pathogenic features. In particular, they could shuttle between lymph nodes and the CNS and produced encephalitogenic cytokines. The cerebrospinal fluid of patients with active MS was enriched for CXCL10 and contained mainly CXCR3-expressing TH1 and TH1/TH17 subsets. However, while TH1 cells responded consistently to viruses, TH1/TH17CM cells reacted strongly with John Cunningham virus in healthy subjects but responded instead to myelin-derived self-antigens in patients with MS. Fingolimod and natalizumab therapies efficiently targeted autoreactive TH1/TH17CM cells but also blocked virus-specific TH1 cells. CONCLUSIONS: We propose that autoreactive TH1/TH17CM cells expand in patients with MS and promote relapses after bystander recruitment to the CNS, whereas TH1 cells perform immune surveillance. Thus the selective targeting of TH1/TH17 cells could inhibit relapses without causing John Cunningham virus-dependent progressive multifocal encephalomyelitis.


Assuntos
Antígenos Virais/imunologia , Autoantígenos/imunologia , Vírus JC/imunologia , Esclerose Múltipla/imunologia , Células Th1/imunologia , Células Th17/imunologia , Adulto , Citocinas/líquido cefalorraquidiano , Citocinas/imunologia , Feminino , Cloridrato de Fingolimode/uso terapêutico , Expressão Gênica , Humanos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Natalizumab/uso terapêutico
8.
Eur J Immunol ; 46(10): 2306-2310, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27726139

RESUMO

Th17 cells are a heterogeneous population of pro-inflammatory T cells that have been shown to mediate immune responses against intestinal bacteria. Th17 cells are highly plastic and can transdifferentiate to Th1/17 cells or unconventional Th1 cells, which are highly pathogenic in animal models of immune-mediated diseases such as inflammatory bowel diseases. A recent European Journal of Immunology article by Liu et al. (Eur. J. Immunol. 2015. 45:1010-1018) showed, surprisingly, that Th1 cells have a similar plasticity, and could transdifferentiate to Th17 cells. Thus, IFN-γ-producing Th1 effector cells specific for an intestinal microbial antigen were shown to acquire IL-17-producing capacities in the gut in a mouse model of colitis, and in response to TGF-ß and IL-6 in vitro. TGF-ß induced Runx1, and together with IL-6 was shown to render the ROR-γt and IL-17 promoters in Th1 cells accessible for Runx1 binding. In this commentary, we discuss how this unexpected plasticity of Th1 cells challenges our view on the generation of Th1/17 cells with the capacity to co-produce IL-17 and IFN-γ, and consider possible implications of this Th1-to-Th17-cell conversion for therapies of inflammatory bowel diseases and protective immune responses against intracellular pathogens.


Assuntos
Infecções/imunologia , Doenças Inflamatórias Intestinais/imunologia , Interleucina-6/metabolismo , Intestinos/imunologia , Células Th1/imunologia , Células Th17/imunologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Plasticidade Celular , Transdiferenciação Celular , Humanos , Imunidade Celular , Camundongos , Fatores de Transcrição
9.
Eur J Immunol ; 46(7): 1622-32, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129615

RESUMO

IL-10 is an anti-inflammatory cytokine that inhibits maturation and cytokine production of dendritic cells (DCs). Although mature DCs have the unique capacity to prime CD8(+) CTL, IL-10 can promote CTL responses. To understand these paradoxic findings, we analyzed the role of IL-10 produced by human APC subsets in T-cell responses. IL-10 production was restricted to CD1c(+) DCs and CD14(+) monocytes. Interestingly, it was differentially regulated, since R848 induced IL-10 in DCs, but inhibited IL-10 in monocytes. Autocrine IL-10 had only a weak inhibitory effect on DC maturation, cytokine production, and CTL priming with high-affinity peptides. Nevertheless, it completely blocked cross-priming and priming with low-affinity peptides of a self/tumor-antigen. IL-10 also inhibited CD1c(+) DC-induced CD4(+) T-cell priming and enhanced Foxp3 induction, but was insufficient to induce T-cell IL-10 production. CD1c(+) DC-derived IL-10 had also no effect on DC-induced secondary expansions of memory CTL. However, IL-15-driven, TCR-independent proliferation of memory CTL was enhanced by IL-10. We conclude that DC-derived IL-10 selects high-affinity CTL upon priming. Moreover, IL-10 preserves established CTL memory by enhancing IL-15-dependent homeostatic proliferation. These combined effects on CTL priming and memory maintenance provide a plausible mechanism how IL-10 promotes CTL responses in humans.


Assuntos
Antígenos CD1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Glicoproteínas/metabolismo , Memória Imunológica/imunologia , Interleucina-10/metabolismo , Ativação Linfocitária/imunologia , Apresentação de Antígeno/imunologia , Comunicação Autócrina/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/citologia , Apresentação Cruzada/imunologia , Citocinas/metabolismo , Antígenos HLA-A/imunologia , Antígenos HLA-A/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
10.
J Immunol ; 195(8): 3617-27, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26378072

RESUMO

IL-17 production defines Th17 cells, which orchestrate immune responses and autoimmune diseases. Human Th17 cells can be efficiently generated with appropriate cytokines from precommitted precursors, but the requirements of uncommitted T cells are still ill defined. In standard human Th17 cultures, IL-17 production was restricted to CCR6(+)CD45RA(+) T cells, which expressed CD95 and produced IL-17 ex vivo, identifying them as Th17 memory stem cells. Uncommitted naive CD4(+) T cells upregulated CCR6, RORC2, and IL-23R expression with Th17-promoting cytokines but in addition required sustained TCR stimulation, late mammalian target of rapamycin (mTOR) activity, and HIF-1α to produce IL-17. However, in standard high-density cultures, nutrients like glucose and amino acids became progressively limiting, and mTOR activity was consequently not sustained, despite ongoing TCR stimulation and T cell proliferation. Sustained, nutrient-dependent mTOR activity also induced spontaneous IL-22 and IFN-γ production, but these cytokines had also unique metabolic requirements. Thus, glucose promoted IL-12-independent Th1 differentiation, whereas aromatic amino acid-derived AHR ligands were selectively required for IL-22 production. The identification of Th17 memory stem cells and the stimulation requirements for induced human Th17/22 differentiation have important implications for T cell biology and for therapies targeting the mTOR pathway.


Assuntos
Diferenciação Celular/imunologia , Memória Imunológica/fisiologia , Interferon gama/imunologia , Interleucinas/imunologia , Transdução de Sinais/imunologia , Células Th17/imunologia , Feminino , Humanos , Masculino , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Receptores CCR6/imunologia , Receptores de Interleucina/imunologia , Células Th17/citologia , Interleucina 22
11.
Int J Mol Sci ; 18(11)2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29135920

RESUMO

Burkholderia cenocepacia is an important opportunistic pathogen in cystic fibrosis (CF) patients, and has also been isolated from natural environments. In previous work, we explored the virulence and pathogenic potential of environmental B. cenocepacia strains and demonstrated that they do not differ from clinical strains in some pathogenic traits. Here, we investigated the ability of the environmental B. cenocepacia Mex1 strain, isolated from the maize rhizosphere, to persist and increase its virulence after serial passages in a mouse model of chronic infection. B. cenocepacia Mex1 strain, belonging to the recA lineage IIIA, was embedded in agar beads and challenged into the lung of C57Bl/6 mice. The mice were sacrificed after 28 days from infection and their lungs were tested for bacterial loads. Agar beads containing the pool of B. cenocepacia colonies from the four sequential passages were used to infect the mice. The environmental B. cenocepacia strain showed a low incidence of chronic infection after the first passage; after the second, third and fourth passages in mice, its ability to establish chronic infection increased significantly and progressively up to 100%. Colonial morphology analysis and genetic profiling of the Mex1-derived clones recovered after the fourth passage from infected mice revealed that they were indistinguishable from the challenged strain both at phenotypic and genetic level. By testing the virulence of single clones in the Galleria mellonella infection model, we found that two Mex1-derived clones significantly increased their pathogenicity compared to the parental Mex1 strain and behaved similarly to the clinical and epidemic B. cenocepacia LMG16656T. Our findings suggest that serial passages of the environmental B. cenocepacia Mex1 strain in mice resulted in an increased ability to determine chronic lung infection and the appearance of clonal variants with increased virulence in non-vertebrate hosts.


Assuntos
Burkholderia cenocepacia/fisiologia , Microbiologia Ambiental , Aptidão Genética , Infecções Respiratórias/microbiologia , Adaptação Fisiológica , Animais , Carga Bacteriana , Biofilmes , Burkholderia cenocepacia/patogenicidade , Doença Crônica , Células Clonais , Contagem de Colônia Microbiana , Estimativa de Kaplan-Meier , Larva/microbiologia , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Inoculações Seriadas , Virulência
12.
J Immunol ; 193(7): 3322-31, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25172491

RESUMO

IL-21 promotes Th17 differentiation, and Th17 cells that upregulate T-bet, IFN-γ, and GM-CSF drive experimental autoimmune diseases in mice. Anti-IL-21 treatment of autoimmune patients is therefore a therapeutic option, but the role of IL-21 in human T cell differentiation is incompletely understood. IL-21 was produced at high levels by human CD4(+) central memory T cells, suggesting that it is associated with early T cell differentiation. Consistently, it was inhibited by forced expression of T-bet or RORC2, the lineage-defining transcription factors of Th1 and Th17 effector cells, respectively. Although IL-21 was efficiently induced by IL-12 in naive CD4(+) T cells, it inhibited the generation of Th1 effector cells in a negative feedback loop. IL-21 was also induced by IL-6 and promoted Th17 differentiation, but it was not absolutely required. Importantly, however, IL-21 promoted IL-10 secretion but inhibited IFN-γ and GM-CSF production in developing Th17 cells, and consequently prevented the generation of polyfunctional Th1/17 effector cells. Moreover, in Th17 memory cells, IL-21 selectively inhibited T-bet upregulation and GM-CSF production. In summary, IL-21 is a central memory T cell-associated cytokine that promotes Th17 differentiation and IL-10 production, but inhibits the generation of potentially pathogenic Th1/17 effector cells. These findings shed new light on the role of IL-21 in T cell differentiation, and have relevant implications for anti-IL-21 therapy of autoimmune diseases.


Assuntos
Doenças Autoimunes/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Interleucinas/imunologia , Células Th1/imunologia , Células Th17/imunologia , Animais , Doenças Autoimunes/patologia , Doenças Autoimunes/terapia , Feminino , Humanos , Interleucina-10/imunologia , Interleucina-12/imunologia , Interleucina-6/imunologia , Masculino , Camundongos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/imunologia , Proteínas com Domínio T/imunologia , Células Th1/patologia , Células Th17/patologia , Regulação para Cima/imunologia
13.
J Infect Dis ; 208(1): 130-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23087427

RESUMO

BACKGROUND: In cystic fibrosis (CF) patients, chronic lung infection and inflammation due to Pseudomonas aeruginosa contribute to the decline of lung function. The increased prevalence of multidrug resistance among bacteria and the adverse effects of antiinflammatory agents highlight the need for alternative therapeutic approaches that should be tested in a relevant animal model. METHODS: Gut-corrected CF and non-CF mice were chronically infected with a multidrug-resistant P. aeruginosa strain and treated with the long pentraxin PTX3. Body weight, bacterial count, inflammation, and lung pathology were evaluated after 12 days. PTX3 localization in CF sputum specimens was analyzed by immunofluorescence. RESULTS: Chronic P. aeruginosa infection developed similarly in CF and non-CF mice but differed in terms of the inflammatory response. Leukocyte recruitment in the airways, cytokine levels, and chemokine levels were significantly higher in CF mice, compared with non-CF mice. PTX3 treatment, which facilitates phagocytosis of pathogens, reduced P. aeruginosa colonization and restored airway inflammation in CF mice to levels observed in non-CF mice. The presence of PTX3 in CF sputum, in leukocytes, or bound to P. aeruginosa macrocolonies, as well as previous data on PTX3 polymorphisms in colonized CF patients, confirm the relevance of this molecule. CONCLUSIONS: These findings represent a step forward in demonstrating the therapeutic potential of PTX3 in CF.


Assuntos
Proteína C-Reativa/uso terapêutico , Camundongos Endogâmicos CFTR/microbiologia , Infecções por Pseudomonas/imunologia , Componente Amiloide P Sérico/uso terapêutico , Animais , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos CFTR/imunologia , Fagocitose/imunologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/patologia , Proteínas Recombinantes/uso terapêutico
14.
PLoS Pathog ; 7(2): e1001270, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21304889

RESUMO

The opportunistic pathogen Pseudomonas aeruginosa can establish life-long chronic infections in the airways of cystic fibrosis (CF) patients. Persistent lifestyle is established with P. aeruginosa patho-adaptive variants, which are clonal with the initially-acquired strains. Several reports indicated that P. aeruginosa adapts by loss-of-function mutations which enhance fitness in CF airways and sustain its clonal expansion during chronic infection. To validate this model of P. aeruginosa adaptation to CF airways and to identify novel genes involved in this microevolution, we designed a novel approach of positive-selection screening by PCR-based signature-tagged mutagenesis (Pos-STM) in a murine model of chronic airways infection. A systematic positive-selection scheme using sequential rounds of in vivo screenings for bacterial maintenance, as opposed to elimination, generated a list of genes whose inactivation increased the colonization and persistence in chronic airways infection. The phenotypes associated to these Pos-STM mutations reflect alterations in diverse aspects of P. aeruginosa biology which include lack of swimming and twitching motility, lack of production of the virulence factors such as pyocyanin, biofilm formation, and metabolic functions. In addition, Pos-STM mutants showed altered invasion and stimulation of immune response when tested in human respiratory epithelial cells, indicating that P. aeruginosa is prone to revise the interaction with its host during persistent lifestyle. Finally, sequence analysis of Pos-STM genes in longitudinally P. aeruginosa isolates from CF patients identified signs of patho-adaptive mutations within the genome. This novel Pos-STM approach identified bacterial functions that can have important clinical implications for the persistent lifestyle and disease progression of the airway chronic infection.


Assuntos
Adaptação Biológica/genética , Mutagênese/fisiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Infecções Respiratórias/microbiologia , Algoritmos , Animais , Células Cultivadas , Doença Crônica , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/fisiologia , Infecções por Pseudomonas/complicações , Infecções por Pseudomonas/genética , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/isolamento & purificação , Infecções Respiratórias/etiologia , Infecções Respiratórias/patologia , Virulência/genética , Fatores de Virulência/genética
15.
J Immunol ; 186(9): 5425-34, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21441447

RESUMO

Chronic lung infections by Pseudomonas aeruginosa strains are a major cause of morbidity and mortality in cystic fibrosis (CF) patients. Although there is no clear evidence for a primary defect in the immune system of CF patients, the host is generally unable to clear P. aeruginosa from the airways. PTX3 is a soluble pattern recognition receptor that plays nonredundant roles in the innate immune response to fungi, bacteria, and viruses. In particular, PTX3 deficiency is associated with increased susceptibility to P. aeruginosa lung infection. To address the potential therapeutic effect of PTX3 in P. aeruginosa lung infection, we established persistent and progressive infections in mice with the RP73 clinical strain RP73 isolated from a CF patient and treated them with recombinant human PTX3. The results indicated that PTX3 has a potential therapeutic effect in P. aeruginosa chronic lung infection by reducing lung colonization, proinflammatory cytokine levels (CXCL1, CXCL2, CCL2, and IL-1ß), and leukocyte recruitment in the airways. In models of acute infections and in in vitro assays, the prophagocytic effect of PTX3 was maintained in C1q-deficient mice and was lost in C3- and Fc common γ-chain-deficient mice, suggesting that facilitated recognition and phagocytosis of pathogens through the interplay between complement and FcγRs are involved in the therapeutic effect mediated by PTX3. These data suggested that PTX3 is a potential therapeutic tool in chronic P. aeruginosa lung infections, such as those seen in CF patients.


Assuntos
Proteína C-Reativa/uso terapêutico , Fatores Imunológicos/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa/imunologia , Infecções Respiratórias/tratamento farmacológico , Componente Amiloide P Sérico/uso terapêutico , Animais , Doença Crônica , Imunofluorescência , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Pseudomonas/imunologia , Infecções Respiratórias/imunologia
16.
J Crohns Colitis ; 17(12): 1988-2001, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37462681

RESUMO

IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.


Assuntos
Doença de Crohn , Infecções por Escherichia coli , Humanos , Doença de Crohn/patologia , Escherichia coli , Células Th17/patologia , Inibidores do Fator de Necrose Tumoral , Intestinos/patologia , Inflamação/patologia , Infecções por Escherichia coli/complicações , Infecções por Escherichia coli/patologia , Interleucina-23 , Mucosa Intestinal/patologia , Aderência Bacteriana
17.
Infect Immun ; 80(1): 100-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22025515

RESUMO

Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1ß, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1ß production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.


Assuntos
Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Receptores de Interleucina-1/metabolismo , Animais , Carga Bacteriana , Citocinas/metabolismo , Histocitoquímica , Pulmão/microbiologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/mortalidade , Infecções por Pseudomonas/mortalidade , Transdução de Sinais , Análise de Sobrevida
19.
Microorganisms ; 10(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35336113

RESUMO

In Crohn's disease (CD) patients, the adherent-invasive Escherichia coli (AIEC) pathovar contributes to the chronic inflammation typical of the disease via its ability to invade gut epithelial cells and to survive in macrophages. We show that, in the AIEC strain LF82, inactivation of the pyrD gene, encoding dihydroorotate dehydrogenase (DHOD), an enzyme of the de novo pyrimidine biosynthetic pathway, completely abolished its ability of to grow in a macrophage environment-mimicking culture medium. In addition, pyrD inactivation reduced flagellar motility and strongly affected biofilm formation by downregulating transcription of both type 1 fimbriae and curli subunit genes. Thus, the pyrD gene appears to be essential for several cellular processes involved in AIEC virulence. Interestingly, vidofludimus (VF), a DHOD inhibitor, has been proposed as an effective drug in CD treatment. Despite displaying a potentially similar binding mode for both human and E. coli DHOD in computational molecular docking experiments, VF showed no activity on either growth or virulence-related processes in LF82. Altogether, our results suggest that the crucial role played by the pyrD gene in AIEC virulence, and the presence of structural differences between E. coli and human DHOD allowing for the design of specific inhibitors, make E. coli DHOD a promising target for therapeutical strategies aiming at counteracting chronic inflammation in CD by acting selectively on its bacterial triggers.

20.
Microorganisms ; 10(6)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35744681

RESUMO

Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA