Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34544855

RESUMO

Ecological interactions uphold ecosystem structure and functioning. However, as species richness increases, the number of possible interactions rises exponentially. More than 6,000 species of coral reef fishes exist across the world's tropical oceans, resulting in an almost innumerable array of possible trophic interactions. Distilling general patterns in these interactions across different bioregions stands to improve our understanding of the processes that govern coral reef functioning. Here, we show that across bioregions, tropical coral reef food webs exhibit a remarkable congruence in their trophic interactions. Specifically, by compiling and investigating the structure of six coral reef food webs across distinct bioregions, we show that when accounting for consumer size and resource availability, these food webs share more trophic interactions than expected by chance. In addition, coral reef food webs are dominated by dietary specialists, which makes trophic pathways vulnerable to biodiversity loss. Prey partitioning among these specialists is geographically consistent, and this pattern intensifies when weak interactions are disregarded. Our results suggest that energy flows through coral reef communities along broadly comparable trophic pathways. Yet, these critical pathways are maintained by species with narrow, specialized diets, which threatens the existence of coral reef functioning in the face of biodiversity loss.


Assuntos
Biodiversidade , Recifes de Corais , Dieta , Ecossistema , Peixes/fisiologia , Cadeia Alimentar , Comportamento Predatório/fisiologia , Animais , Biomassa , Peixes/classificação
2.
PLoS Biol ; 18(12): e3000702, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33370276

RESUMO

Understanding species' roles in food webs requires an accurate assessment of their trophic niche. However, it is challenging to delineate potential trophic interactions across an ecosystem, and a paucity of empirical information often leads to inconsistent definitions of trophic guilds based on expert opinion, especially when applied to hyperdiverse ecosystems. Using coral reef fishes as a model group, we show that experts disagree on the assignment of broad trophic guilds for more than 20% of species, which hampers comparability across studies. Here, we propose a quantitative, unbiased, and reproducible approach to define trophic guilds and apply recent advances in machine learning to predict probabilities of pairwise trophic interactions with high accuracy. We synthesize data from community-wide gut content analyses of tropical coral reef fishes worldwide, resulting in diet information from 13,961 individuals belonging to 615 reef fish. We then use network analysis to identify 8 trophic guilds and Bayesian phylogenetic modeling to show that trophic guilds can be predicted based on phylogeny and maximum body size. Finally, we use machine learning to test whether pairwise trophic interactions can be predicted with accuracy. Our models achieved a misclassification error of less than 5%, indicating that our approach results in a quantitative and reproducible trophic categorization scheme, as well as high-resolution probabilities of trophic interactions. By applying our framework to the most diverse vertebrate consumer group, we show that it can be applied to other organismal groups to advance reproducibility in trait-based ecology. Our work thus provides a viable approach to account for the complexity of predator-prey interactions in highly diverse ecosystems.


Assuntos
Peixes/microbiologia , Cadeia Alimentar , Microbioma Gastrointestinal/fisiologia , Animais , Teorema de Bayes , Tamanho Corporal , Recifes de Corais , Dieta , Ecologia , Ecossistema , Peixes/metabolismo , Modelos Teóricos , Filogenia , Reprodutibilidade dos Testes
3.
Proc Biol Sci ; 288(1953): 20210274, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34187190

RESUMO

Reef fishes are a treasured part of marine biodiversity, and also provide needed protein for many millions of people. Although most reef fishes might survive projected increases in ocean temperatures, corals are less tolerant. A few fish species strictly depend on corals for food and shelter, suggesting that coral extinctions could lead to some secondary fish extinctions. However, secondary extinctions could extend far beyond those few coral-dependent species. Furthermore, it is yet unknown how such fish declines might vary around the world. Current coral mass mortalities led us to ask how fish communities would respond to coral loss within and across oceans. We mapped 6964 coral-reef-fish species and 119 coral genera, and then regressed reef-fish species richness against coral generic richness at the 1° scale (after controlling for biogeographic factors that drive species diversification). Consistent with small-scale studies, statistical extrapolations suggested that local fish richness across the globe would be around half its current value in a hypothetical world without coral, leading to more areas with low or intermediate fish species richness and fewer fish diversity hotspots.


Assuntos
Antozoários , Tetraodontiformes , Animais , Biodiversidade , Recifes de Corais , Peixes , Humanos , Oceanos e Mares
4.
Glob Chang Biol ; 27(11): 2623-2632, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33749949

RESUMO

Sea-level rise is predicted to cause major damage to tropical coastlines. While coral reefs can act as natural barriers for ocean waves, their protection hinges on the ability of scleractinian corals to produce enough calcium carbonate (CaCO3 ) to keep up with rising sea levels. As a consequence of intensifying disturbances, coral communities are changing rapidly, potentially reducing community-level CaCO3 production. By combining colony-level physiology and long-term monitoring data, we show that reefs recovering from major disturbances can produce 40% more CaCO3 than currently estimated due to the disproportionate contribution of juvenile corals. However, the buffering effect of highly productive juvenile corals is compromised by recruitment failures, which have been more frequently observed after large-scale, repeated bleaching events. While the size structure of corals can bolster a critical ecological function on reefs, climate change impacts on recruitment may undermine this buffering effect, thus further compromising the persistence of reefs and their provision of important ecosystem services.


Assuntos
Antozoários , Recifes de Corais , Animais , Carbonatos , Mudança Climática , Ecossistema
5.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29263277

RESUMO

In spite of growing evidence that climate change may dramatically affect networks of interacting species, whether-and to what extent-ecological interactions can mediate species' responses to disturbances is an open question. Here we show how a largely overseen association such as that between hydrozoans and scleractinian corals could be possibly associated with a reduction in coral susceptibility to ever-increasing predator and disease outbreaks. We examined 2455 scleractinian colonies (from both Maldivian and the Saudi Arabian coral reefs) searching for non-random patterns in the occurrence of hydrozoans on corals showing signs of different health conditions (i.e. bleaching, algal overgrowth, corallivory and different coral diseases). We show that, after accounting for geographical, ecological and co-evolutionary factors, signs of disease and corallivory are significantly lower in coral colonies hosting hydrozoans than in hydrozoan-free ones. This finding has important implications for our understanding of the ecology of coral reefs, and for their conservation in the current scenario of global change, because it suggests that symbiotic hydrozoans may play an active role in protecting their scleractinian hosts from stresses induced by warming water temperatures.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Suscetibilidade a Doenças , Cadeia Alimentar , Hidrozoários/fisiologia , Simbiose , Animais , Ilhas do Oceano Índico , Arábia Saudita
6.
Proc Natl Acad Sci U S A ; 111(38): 13757-62, 2014 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-25225388

RESUMO

When tropical systems lose species, they are often assumed to be buffered against declines in functional diversity by the ability of the species-rich biota to display high functional redundancy: i.e., a high number of species performing similar functions. We tested this hypothesis using a ninefold richness gradient in global fish faunas on tropical reefs encompassing 6,316 species distributed among 646 functional entities (FEs): i.e., unique combinations of functional traits. We found that the highest functional redundancy is located in the Central Indo-Pacific with a mean of 7.9 species per FE. However, this overall level of redundancy is disproportionately packed into few FEs, a pattern termed functional over-redundancy (FOR). For instance, the most speciose FE in the Central Indo-Pacific contains 222 species (out of 3,689) whereas 38% of FEs (180 out of 468) have no functional insurance with only one species. Surprisingly, the level of FOR is consistent across the six fish faunas, meaning that, whatever the richness, over a third of the species may still be in overrepresented FEs whereas more than one third of the FEs are left without insurance, these levels all being significantly higher than expected by chance. Thus, our study shows that, even in high-diversity systems, such as tropical reefs, functional diversity remains highly vulnerable to species loss. Although further investigations are needed to specifically address the influence of redundant vs. vulnerable FEs on ecosystem functioning, our results suggest that the promised benefits from tropical biodiversity may not be as strong as previously thought.


Assuntos
Biodiversidade , Recifes de Corais , Peixes/fisiologia , Clima Tropical , Animais
7.
Proc Biol Sci ; 283(1844)2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27928042

RESUMO

High species richness is thought to support the delivery of multiple ecosystem functions and services under changing environments. Yet, some species might perform unique functional roles while others are redundant. Thus, the benefits of high species richness in maintaining ecosystem functioning are uncertain if functions have little redundancy, potentially leading to high vulnerability of functions. We studied the natural propensity of assemblages to be functionally buffered against loss prior to fishing activities, using functional trait combinations, in coral reef fish assemblages across unfished wilderness areas of the Indo-Pacific: Chagos Archipelago, New Caledonia and French Polynesia. Fish functional diversity in these wilderness areas is highly vulnerable to fishing, explained by species- and abundance-based redundancy packed into a small combination of traits, leaving most other trait combinations (60%) sensitive to fishing, with no redundancy. Functional vulnerability peaks for mobile and sedentary top predators, and large species in general. Functional vulnerability decreases for certain functional entities in New Caledonia, where overall functional redundancy was higher. Uncovering these baseline patterns of functional vulnerability can offer early warning signals of the damaging effects from fishing, and may serve as baselines to guide precautionary and even proactive conservation actions.


Assuntos
Recifes de Corais , Peixes , Animais , Conservação dos Recursos Naturais , Atividades Humanas , Humanos , Nova Caledônia , Polinésia , Meio Selvagem
8.
Ecol Lett ; 18(3): 246-53, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25626355

RESUMO

Climatic niche conservatism, the tendency of species-climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo-Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.


Assuntos
Clima , Fenômenos Ecológicos e Ambientais , Espécies Introduzidas , Modelos Biológicos , Animais , Biodiversidade , Peixes , Mar Mediterrâneo , Dinâmica Populacional , Risco , Especificidade da Espécie
9.
Ecol Lett ; 17(9): 1101-10, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24985880

RESUMO

The impact of anthropogenic activity on ecosystems has highlighted the need to move beyond the biogeographical delineation of species richness patterns to understanding the vulnerability of species assemblages, including the functional components that are linked to the processes they support. We developed a decision theory framework to quantitatively assess the global taxonomic and functional vulnerability of fish assemblages on tropical reefs using a combination of sensitivity to species loss, exposure to threats and extent of protection. Fish assemblages with high taxonomic and functional sensitivity are often exposed to threats but are largely missed by the global network of marine protected areas. We found that areas of high species richness spatially mismatch areas of high taxonomic and functional vulnerability. Nevertheless, there is strong spatial match between taxonomic and functional vulnerabilities suggesting a potential win-win conservation-ecosystem service strategy if more protection is set in these locations.


Assuntos
Biodiversidade , Recifes de Corais , Peixes/fisiologia , Modelos Biológicos , Animais , Conservação dos Recursos Naturais , Ecossistema
10.
Adv Mar Biol ; 66: 213-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24182902

RESUMO

The Coral Sea, located at the southwestern rim of the Pacific Ocean, is the only tropical marginal sea where human impacts remain relatively minor. Patterns and processes identified within the region have global relevance as a baseline for understanding impacts in more disturbed tropical locations. Despite 70 years of documented research, the Coral Sea has been relatively neglected, with a slower rate of increase in publications over the past 20 years than total marine research globally. We review current knowledge of the Coral Sea to provide an overview of regional geology, oceanography, ecology and fisheries. Interactions between physical features and biological assemblages influence ecological processes and the direction and strength of connectivity among Coral Sea ecosystems. To inform management effectively, we will need to fill some major knowledge gaps, including geographic gaps in sampling and a lack of integration of research themes, which hinder the understanding of most ecosystem processes.


Assuntos
Antozoários/fisiologia , Biodiversidade , Oceanos e Mares , Animais , Mudança Climática , Demografia , Cadeia Alimentar , Atividades Humanas , Humanos , Poluição da Água
11.
Sci Rep ; 13(1): 1683, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717604

RESUMO

Coral reefs offer natural coastal protection by attenuating incoming waves. Here we combine unique coral disturbance-recovery observations with hydrodynamic models to quantify how structural complexity dissipates incoming wave energy. We find that if the structural complexity of healthy coral reefs conditions is halved, extreme wave run-up heights that occur once in a 100-years will become 50 times more frequent, threatening reef-backed coastal communities with increased waves, erosion, and flooding.


Assuntos
Antozoários , Recifes de Corais , Animais , Inundações , Hidrodinâmica , Ecossistema
12.
Nat Commun ; 14(1): 985, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36813767

RESUMO

Anthropogenic pressures are restructuring coral reefs globally. Sound predictions of the expected changes in key reef functions require adequate knowledge of their drivers. Here we investigate the determinants of a poorly-studied yet relevant biogeochemical function sustained by marine bony fishes: the excretion of intestinal carbonates. Compiling carbonate excretion rates and mineralogical composition from 382 individual coral reef fishes (85 species and 35 families), we identify the environmental factors and fish traits that predict them. We find that body mass and relative intestinal length (RIL) are the strongest predictors of carbonate excretion. Larger fishes and those with longer intestines excrete disproportionately less carbonate per unit mass than smaller fishes and those with shorter intestines. The mineralogical composition of excreted carbonates is highly conserved within families, but also controlled by RIL and temperature. These results fundamentally advance our understanding of the role of fishes in inorganic carbon cycling and how this contribution will change as community composition shifts under increasing anthropogenic pressures.


Assuntos
Antozoários , Recifes de Corais , Animais , Temperatura , Peixes , Carbonatos , Efeitos Antropogênicos , Ecossistema
13.
Ecology ; 104(8): e4119, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37303281

RESUMO

Consumers mediate nutrient cycling through excretion and egestion across most ecosystems. In nutrient-poor tropical waters such as coral reefs, nutrient cycling is critical for maintaining productivity. While the cycling of fish-derived inorganic nutrients via excretion has been extensively investigated, the role of egestion for nutrient cycling has remained poorly explored. We sampled the fecal contents of 570 individual fishes across 40 species, representing six dominant trophic guilds of coral reef fishes in Moorea, French Polynesia. We measured fecal macro- (proteins, carbohydrates, lipids) and micro- (calcium, copper, iron, magnesium, manganese, zinc) nutrients and compared the fecal nutrient quantity and quality across trophic guilds, taxa, and body size. Macro- and micronutrient concentrations in fish feces varied markedly across species. Genera and trophic guild best predicted fecal nutrient concentrations. In addition, nutrient composition in feces was unique among species within both trophic guilds (herbivores and corallivores) and genera (Acanthurus and Chaetodon). Particularly, certain coral reef fishes (e.g., Thalassoma hardwicke, Chromis xanthura, Chaetodon pelewensis and Acanthurus pyroferus) harbored relatively high concentrations of micronutrients (e.g., Mn, Mg, Zn and Fe, respectively) that are known to contribute to ocean productivity and positively impact coral physiological performances. Given the nutrient-rich profiles across reef fish feces, conserving holistic reef fish communities ensures the availability of nutritional pools on coral reefs. We therefore suggest that better integration of consumer egestion dynamics into food web models and ecosystem-scale processes will facilitate an improved understanding of coral reef functioning.


Assuntos
Antozoários , Perciformes , Animais , Recifes de Corais , Ecossistema , Peixes/fisiologia , Nutrientes , Fezes
14.
Sci Total Environ ; 844: 157049, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35780903

RESUMO

The rapid decline of shallow coral reefs has increased the interest in the long-understudied mesophotic coral ecosystems (MCEs). However, MCEs are usually characterised by rather low to moderate scleractinian coral cover, with only a few descriptions of high coral cover at depth. Here, we explored eight islands across French Polynesia over a wide depth range (6 to 120 m) to identify coral cover hotspots at mesophotic depths and the co-occurrent biotic groups and abiotic factors that influence such high scleractinian cover. Using Bayesian modelling, we found that 20 out of 64 of studied deep sites exhibited a coral cover higher than expected in the mesophotic range (e.g. as high as 81.8 % at 40 m, 74.5 % at 60 m, 53 % at 90 m and 42 % at 120 m vs the average expected values based on the model of 31.2 % at 40 m, 22.8 % at 60 m, 14.6 % at 90 m and 9.8 % at 120 m). Omitting the collinear factors light-irradiance and depth, these 'hotspots' of coral cover corresponded to mesophotic sites and depths characterised by hard substrate, a steep to moderate slope, and the dominance of laminar corals. Our work unveils the presence of unexpectedly and unique high coral cover communities at mesophotic depths in French Polynesia, highlighting the importance of expanding the research on deeper depths for the potential relevance in the conservation management of tropical coral reefs.


Assuntos
Antozoários , Animais , Teorema de Bayes , Recifes de Corais , Ecossistema , Polinésia
15.
Ecol Evol ; 12(7): e9084, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35813930

RESUMO

Organismal metabolic rates (MRs) are the basis of energy and nutrient fluxes through ecosystems. In the marine realm, fishes are some of the most prominent consumers. However, their metabolic demand in the wild (field MR [FMR]) is poorly documented, because it is challenging to measure directly. Here, we introduce a novel approach to estimating the component of FMR associated with voluntary activity (i.e., the field active MR [ AM R field ] ). Our approach combines laboratory-based respirometry, swimming speeds, and field-based stereo-video systems to estimate the activity of individuals. We exemplify our approach by focusing on six coral reef fish species, for which we quantified standard MR and maximum MR (SMR and MMR, respectively) in the laboratory, and body sizes and swimming speeds in the field. Based on the relationships between MR, body size, and swimming speeds, we estimate that the activity scope (i.e., the ratio between AM R field and SMR) varies from 1.2 to 3.2 across species and body sizes. Furthermore, we illustrate that the scaling exponent for AM R field varies across species and can substantially exceed the widely assumed value of 0.75 for SMR. Finally, by scaling organismal AM R field estimates to the assemblage level, we show the potential effect of this variability on community metabolic demand. Our approach may improve our ability to estimate elemental fluxes mediated by a critically important group of aquatic animals through a non-destructive, widely applicable technique.

16.
Ecol Evol ; 12(3): e8613, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342609

RESUMO

Coral reefs provide a range of important services to humanity, which are underpinned by community-level ecological processes such as coral calcification. Estimating these processes relies on our knowledge of individual physiological rates and species-specific abundances in the field. For colonial animals such as reef-building corals, abundance is frequently expressed as the relative surface cover of coral colonies, a metric that does not account for demographic parameters such as coral size. This may be problematic because many physiological rates are directly related to organism size, and failure to account for linear scaling patterns may skew estimates of ecosystem functioning. In the present study, we characterize the scaling of three physiological rates - calcification, respiration, and photosynthesis - considering the colony size for six prominent, reef-building coral taxa in Mo'orea, French Polynesia. After a seven-day acclimation period in the laboratory, we quantified coral physiological rates for three hours during daylight (i.e., calcification and gross photosynthesis) and one hour during night light conditions (i.e., dark respiration). Our results indicate that area-specific calcification rates are higher for smaller colonies across all taxa. However, photosynthesis and respiration rates remain constant over the colony-size gradient. Furthermore, we revealed a correlation between the demographic dynamics of coral genera and the ratio between net primary production and calcification rates. Therefore, intraspecific scaling of reef-building coral physiology not only improves our understanding of community-level coral reef functioning but it may also explain species-specific responses to disturbances.

17.
Nat Ecol Evol ; 6(6): 701-708, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35379939

RESUMO

Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.


Assuntos
Recifes de Corais , Ecossistema , Animais , Biodiversidade , Biomassa , Mudança Climática
18.
R Soc Open Sci ; 8(11): 210139, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804562

RESUMO

Climate change and consequent coral bleaching are causing the disappearance of reef-building corals worldwide. While bleaching episodes significantly impact shallow waters, little is known about their impact on mesophotic coral communities. We studied the prevalence of coral bleaching two to three months after a heat stress event, along an extreme depth range from 6 to 90 m in French Polynesia. Bayesian modelling showed a decreasing probability of bleaching of all coral genera over depth, with little to no bleaching observed at lower mesophotic depths (greater than or equal to 60 m). We found that depth-generalist corals benefit more from increasing depth than depth-specialists (corals with a narrow depth range). Our data suggest that the reduced prevalence of bleaching with depth, especially from shallow to upper mesophotic depths (40 m), had a stronger relation with the light-irradiance attenuation than temperature. While acknowledging the geographical and temporal variability of the role of mesophotic reefs as spatial refuges during thermal stress, we ought to understand why coral bleaching reduces with depth. Future studies should consider repeated monitoring and detailed ecophysiological and environmental data. Our study demonstrated how increasing depth may offer a level of protection and that lower mesophotic communities could escape the impacts of a thermal bleaching event.

19.
Sci Rep ; 11(1): 20950, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697332

RESUMO

We studied the food web structure and functioning of a coral reef ecosystem in the Marquesas Islands, French Polynesia, characterized by low coral cover, high sea surface temperature and meso- to eutrophic waters. The Marquesas constitute a relevant ecosystem to understand the functioning of low diversity reefs that are also subject to global change. A multi-tracer assessment of organic matter pathways was run to delineate ecosystem functioning, using analysis of fatty acids, bulk and compound specific stable isotope analysis and stable isotopes mixing models. Macroalgae and phytoplankton were the two major food sources fueling this food web with, however, some marked seasonal variations. Specifically, zooplankton relied on phytoplankton-derived organic matter and herbivorous fishes on macroalgae-derived organic matter to a much higher extent in summer than in winter (~ 75% vs. ~ 15%, and ~ 70 to 75% vs. ~ 5 to 15%, respectively) . Despite remarkably high δ15N values for all trophic compartments, likely due to local dynamics in the nitrogen stock, trophic levels of consumers were similar to those of other coral reef ecosystems. These findings shed light on the functioning of low coral cover systems, which are expected to expand worldwide under global change.


Assuntos
Ácidos Graxos/análise , Peixes/fisiologia , Fitoplâncton/química , Alga Marinha/química , Zooplâncton/fisiologia , Animais , Recifes de Corais , Ecossistema , Cadeia Alimentar , Herbivoria , Temperatura Alta , Marcação por Isótopo , Polinésia
20.
Mar Pollut Bull ; 170: 112659, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34217050

RESUMO

Coral reefs are declining at an unprecedented rate as a consequence of local and global stressors. Using a 26-year monitoring database, we analyzed the loss and recovery dynamics of coral communities across seven islands and three archipelagos in French Polynesia. Reefs in the Society Islands recovered relatively quickly after disturbances, which was driven by the recovery of corals in the genus Pocillopora (84% of the total recovery). In contrast, reefs in the Tuamotu and Austral archipelagos recovered poorly or not at all. Across archipelagos, predation by crown-of-thorns starfish and destruction by cyclones outweighed the effects of heat stress events on coral mortality. Despite the apparently limited effect of temperature-mediated stressors, the homogenization of coral communities towards dominance of Pocillopora in the Society Archipelago and the failure to fully recover from disturbances in the other two archipelagos concern the resilience of Polynesian coral communities in the face of intensifying climate-driven stressors.


Assuntos
Antozoários , Tempestades Ciclônicas , Animais , Recifes de Corais , Estrelas-do-Mar , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA