Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 59: 405-421, 2019 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-30208282

RESUMO

With pharmaceutical companies shrinking their research departments and exiting out of efforts related to unprofitable diseases, society has become increasingly dependent on academic institutions to perform drug discovery and early-stage translational research. Academic drug discovery and translational research programs assist in shepherding promising therapeutic opportunities through the so-called valley of death in the hope that a successful new drug will result in saved lives, improved health, economic growth, and financial return. We have interviewed directors of 16 such academic programs in the United States and found that these programs and the projects therein face numerous challenges in reaching the clinic, including limited funding, lack of know-how, and lack of a regional drug development ecosystem. If these issues can be addressed through novel industry partnerships, the revision of government policies, and expanded programs in translational education, more effective new therapies are more likely to reach patients in need.


Assuntos
Descoberta de Drogas/legislação & jurisprudência , Indústria Farmacêutica/legislação & jurisprudência , Pesquisa Translacional Biomédica/legislação & jurisprudência , Animais , Ecossistema , Humanos , Estados Unidos
2.
Proc Natl Acad Sci U S A ; 112(26): E3421-30, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26080406

RESUMO

Streptococcus pneumoniae is a leading cause of pneumonia and one of the most common causes of death globally. The impact of S. pneumoniae on host molecular processes that lead to detrimental pulmonary consequences is not fully understood. Here, we show that S. pneumoniae induces toxic DNA double-strand breaks (DSBs) in human alveolar epithelial cells, as indicated by ataxia telangiectasia mutated kinase (ATM)-dependent phosphorylation of histone H2AX and colocalization with p53-binding protein (53BP1). Furthermore, results show that DNA damage occurs in a bacterial contact-independent fashion and that Streptococcus pyruvate oxidase (SpxB), which enables synthesis of H2O2, plays a critical role in inducing DSBs. The extent of DNA damage correlates with the extent of apoptosis, and DNA damage precedes apoptosis, which is consistent with the time required for execution of apoptosis. Furthermore, addition of catalase, which neutralizes H2O2, greatly suppresses S. pneumoniae-induced DNA damage and apoptosis. Importantly, S. pneumoniae induces DSBs in the lungs of animals with acute pneumonia, and H2O2 production by S. pneumoniae in vivo contributes to its genotoxicity and virulence. One of the major DSBs repair pathways is nonhomologous end joining for which Ku70/80 is essential for repair. We find that deficiency of Ku80 causes an increase in the levels of DSBs and apoptosis, underscoring the importance of DNA repair in preventing S. pneumoniae-induced genotoxicity. Taken together, this study shows that S. pneumoniae-induced damage to the host cell genome exacerbates its toxicity and pathogenesis, making DNA repair a potentially important susceptibility factor in people who suffer from pneumonia.


Assuntos
Apoptose , Dano ao DNA , Peróxido de Hidrogênio/metabolismo , Alvéolos Pulmonares/metabolismo , Streptococcus pneumoniae/metabolismo , Animais , Reparo do DNA , Células Epiteliais/patologia , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Alvéolos Pulmonares/citologia , Streptococcus pneumoniae/patogenicidade , Virulência
3.
Cell Mol Life Sci ; 72(15): 2973-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25809161

RESUMO

Influenza viruses account for significant morbidity worldwide. Inflammatory responses, including excessive generation of reactive oxygen and nitrogen species (RONS), mediate lung injury in severe influenza infections. However, the molecular basis of inflammation-induced lung damage is not fully understood. Here, we studied influenza H1N1 infected cells in vitro, as well as H1N1 infected mice, and we monitored molecular and cellular responses over the course of 2 weeks in vivo. We show that influenza induces DNA damage to both, when cells are directly exposed to virus in vitro (measured using the comet assay) and also when cells are exposed to virus in vivo (estimated via γH2AX foci). We show that DNA damage, as well as responses to DNA damage persist in vivo until long after virus has been cleared, at times when there are inflammation associated RONS (measured by xanthine oxidase activity and oxidative products). The frequency of lung epithelial and immune cells with increased γH2AX foci is elevated in vivo, especially for dividing cells (Ki-67-positive) exposed to oxidative stress during tissue regeneration. Additionally, we observed a significant increase in apoptotic cells as well as increased levels of DNA double strand break (DSB) repair proteins Ku70, Ku86 and Rad51 during the regenerative phase. In conclusion, results show that influenza induces DNA damage both in vitro and in vivo, and that DNA damage responses are activated, raising the possibility that DNA repair capacity may be a determining factor for tissue recovery and disease outcome.


Assuntos
Dano ao DNA/genética , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/fisiopatologia , Regeneração/genética , Regeneração/fisiologia , Animais , Linhagem Celular , Reparo do DNA/genética , Cães , Vírus da Influenza A Subtipo H1N1 , Pulmão/fisiopatologia , Pulmão/virologia , Células Madin Darby de Rim Canino , Estresse Oxidativo/genética , Pneumonia/fisiopatologia , Pneumonia/virologia
4.
Proc Natl Acad Sci U S A ; 108(46): E1137-45, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21949402

RESUMO

Injury- and ischemia-induced angiogenesis is critical for tissue repair and requires nitric oxide (NO) derived from endothelial nitric oxide synthase (eNOS). We present evidence that NO induces angiogenesis by modulating the level of the angiogenesis inhibitor thrombospondin 2 (TSP2). TSP2 levels were higher than WT in eNOS KO tissues in hind-limb ischemia and cutaneous wounds. In vitro studies confirmed that NO represses TSP2 promoter activity. Moreover, double-eNOS/TSP2 KO mice were generated and found to rescue the phenotype of eNOS KO mice. Studies in mice with knock-in constitutively active or inactive eNOS on the Akt-1 KO background showed that eNOS activity correlates with TSP2 levels. Our observations of NO-mediated regulation of angiogenesis via the suppression of TSP2 expression provide a description of improved eNOS KO phenotype by means other than restoring NO signaling.


Assuntos
Regulação Enzimológica da Expressão Gênica , Óxido Nítrico Sintase Tipo III/metabolismo , Trombospondinas/biossíntese , Animais , Matriz Extracelular/metabolismo , Células HEK293 , Humanos , Isquemia , Camundongos , Camundongos Knockout , Células NIH 3T3 , Neovascularização Patológica , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Transdução de Sinais , Pele/patologia , Trombospondinas/genética
5.
J Clin Transl Sci ; 6(1): e35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433035

RESUMO

Introduction: This research examined the perspective of the Huntington's disease (HD) community regarding the use of predictive biomarkers as endpoints for regulatory approval of therapeutics to prevent or delay the onset of clinical HD in asymptomatic mutation carriers. Methods: An online, choice-based conjoint survey was shared with HD community members including untested at-risk individuals, presymptomatic mutation carriers, and symptomatic individuals. Across 15 scenarios, participants chose among two proposed therapies with differing degrees of biomarker improvement and side effects or a third option of no treatment. Results: Two hundred and thirty-eight responses were received. Attributes reflecting biomarker efficacy (e.g., prevention of brain atrophy on magnetic resonance imaging, reduced mutant huntingtin, or reduced inflammation biomarkers) had 3- to 7-fold greater importance than attributes representing side effects (e.g., increased risk of heart disease, cancer, and stroke over 20 years) and were more influential in directing choice of treatments. Reduction in mutant huntingtin protein was the most valued attribute overall. Multinomial logit model simulations based on survey responses demonstrated high interest among respondents (87-99% of the population) for drugs that might prevent or delay HD solely based upon biomarker evidence, even at the risk of serious side effects. Conclusion: These results indicate a strong desire among members of the HD community for preventive therapeutics and a willingness to accept significant side effects, even before the drug has been shown to definitively delay disease onset if the drug improves biomarker evidence of HD progression. Preferences of the HD community should inform regulatory policies for approving preventive therapies.

6.
DNA Repair (Amst) ; 68: 25-33, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29929044

RESUMO

It is well established that inflammation leads to the creation of potent DNA damaging chemicals, including reactive oxygen and nitrogen species. Nitric oxide can react with glutathione to create S-nitrosoglutathione (GSNO), which can in turn lead to S-nitrosated proteins. Of particular interest is the impact of GSNO on the function of DNA repair enzymes. The base excision repair (BER) pathway can be initiated by the alkyl-adenine DNA glycosylase (AAG), a monofunctional glycosylase that removes methylated bases. After base removal, an abasic site is formed, which then gets cleaved by AP endonuclease and processed by downstream BER enzymes. Interestingly, using the Fluorescence-based Multiplexed Host Cell Reactivation Assay (FM-HCR), we show that GSNO actually enhances AAG activity, which is consistent with the literature. This raised the possibility that there might be imbalanced BER when cells are challenged with a methylating agent. To further explore this possibility, we confirmed that GSNO can cause AP endonuclease to translocate from the nucleus to the cytoplasm, which might further exacerbate imbalanced BER by increasing the levels of AP sites. Analysis of abasic sites indeed shows GSNO induces an increase in the level of AP sites. Furthermore, analysis of DNA damage using the CometChip (a higher throughput version of the comet assay) shows an increase in the levels of BER intermediates. Finally, we found that GSNO exposure is associated with an increase in methylation-induced cytotoxicity. Taken together, these studies support a model wherein GSNO increases BER initiation while processing of AP sites is decreased, leading to a toxic increase in BER intermediates. This model is also supported by additional studies performed in our laboratory showing that inflammation in vivo leads to increased large-scale sequence rearrangements. Taken together, this work provides new evidence that inflammatory chemicals can drive cytotoxicity and mutagenesis via BER imbalance.


Assuntos
Adutos de DNA/metabolismo , Reparo do DNA/efeitos dos fármacos , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Animais , Células Cultivadas , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , Camundongos , Nitrosação , Transporte Proteico , S-Nitrosoglutationa/química
7.
Environ Mol Mutagen ; 58(7): 508-521, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28755435

RESUMO

DNA damage and alterations in global DNA methylation status are associated with multiple human diseases and are frequently correlated with clinically relevant information. Therefore, assessing DNA damage and epigenetic modifications, including DNA methylation, is critical for predicting human exposure risk of pharmacological and biological agents. We previously developed a higher-throughput platform for the single cell gel electrophoresis (comet) assay, CometChip, to assess DNA damage and genotoxic potential. Here, we utilized the methylation-dependent endonuclease, McrBC, to develop a modified alkaline comet assay, "EpiComet," which allows single platform evaluation of genotoxicity and global DNA methylation [5-methylcytosine (5-mC)] status of single-cell populations under user-defined conditions. Further, we leveraged the CometChip platform to create an EpiComet-Chip system capable of performing quantification across simultaneous exposure protocols to enable unprecedented speed and simplicity. This system detected global methylation alterations in response to exposures which included chemotherapeutic and environmental agents. Using EpiComet-Chip on 63 matched samples, we correctly identified single-sample hypermethylation (≥1.5-fold) at 87% (20/23), hypomethylation (≥1.25-fold) at 100% (9/9), with a 4% (2/54) false-negative rate (FNR), and 10% (4/40) false-positive rate (FPR). Using a more stringent threshold to define hypermethylation (≥1.75-fold) allowed us to correctly identify 94% of hypermethylation (17/18), but increased our FPR to 16% (7/45). The successful application of this novel technology will aid hazard identification and risk characterization of FDA-regulated products, while providing utility for investigating epigenetic modes of action of agents in target organs, as the assay is amenable to cultured cells or nucleated cells from any tissue. Environ. Mol. Mutagen. 58:508-521, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Ensaio Cometa/métodos , Dano ao DNA , Metilação de DNA/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Ensaios de Triagem em Larga Escala/métodos , Técnicas de Cultura de Células , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Metanossulfonato de Metila/toxicidade , Mutagênicos/toxicidade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA