Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rapid Commun Mass Spectrom ; 34(7): e8627, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31658503

RESUMO

RATIONALE: The microanalytical community has an outstanding need for platinum group element (PGE) reference materials, particularly for trace element analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS). National Institute of Standards and Technology (NIST) glasses contain Rh, Pd, and Pt, but lack Ru, Os, and Ir. Synthesis of silicate PGE standards has proven difficult due the tendency of PGEs to form metallic nuggets. METHODS: Additive manufacturing methods were used to produce PGE standards with a silica matrix. Monodispersed submicron PGE-doped Stöber particles were used as feedstock materials for electrophoretic deposition (EPD). Two-cm-sized samples produced by EPD were subsequently densified by thermal processing. The homogeneity of PGEs was tested using LA-ICPMS and concentrations were measured by laser ablation and solution ICPMS. RESULTS: The PGE concentrations ranged from 0.5 to 3 µg/g. The inhomogeneity was at the 3% RSD level for Ru, Rh, Ir, and Os throughout and 5% for Pt and Pd in the interior of the samples. Based on LA-ICPMS analyses, the interiors of the two samples have near identical concentrations in PGEs. CONCLUSIONS: The samples fabricated in this study represent the most complete and homogeneous PGE standards produced with a silicate matrix. The ability to produce multiple samples with the same composition provides opportunities for validating methods, monitoring long-term reproducibility, and facilitating interlaboratory comparisons.

2.
Anal Chem ; 91(18): 11643-11652, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31418542

RESUMO

An intercomparison of the radio-chronometric ages of four distinct plutonium-certified reference materials varying in chemical form, isotopic composition, and period of production are presented. The cross-comparison of the different 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages obtained at four independent analytical facilities covering a range of laboratory environments from bulk sample processing to clean facilities dedicated to nuclear forensic investigation of environmental samples enables a true assessment of the state-of-practice in "age dating capabilities" for nuclear materials. The analytical techniques evaluated used modern mass spectrometer instrumentation including thermal ionization mass spectrometers and inductively coupled plasma mass spectrometers for isotopic abundance measurements. Both multicollector and single collector instruments were utilized to generate the data presented here. Consensus values established in this study make it possible to use these isotopic standards as quality control standards for radio-chronometry applications. Results highlight the need for plutonium isotopic standards that are certified for 234U/238Pu, 235U/239Pu, 236U/240Pu, and 241Am/241Pu model purification ages as well as other multigenerational radio-chronometers such as 237Np/241Pu. Due to the capabilities of modern analytical instrumentation, analytical laboratories that focus on trace level analyses can obtain model ages with marginally larger uncertainties than laboratories that handle bulk samples. When isotope ratio measurement techniques like thermal ionization mass spectrometry and inductively coupled plasma mass spectrometry with comparable precision are utilized, model purification ages with similar uncertainties are obtained.

3.
Dalton Trans ; 53(17): 7376-7383, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584573

RESUMO

Cerium oxide particles are a unique material that enables studying the intersection of metal oxides, f-elements, and nanomaterials. Distinct from diverse applications in catalysis, energy, and medicine, cerium possesses additional influence as a non-radioactive actinide surrogate. Herein, we present a synthesis for sub-micron cerium particles using hexamethylenetetramine and ammonium hydroxide as precipitating agents with a CeIV precursor. The combinatorial homogeneous precipitation approach yields monodisperse and moderately-stable CeO2 particle suspensions in ethanol, as determined by powder X-ray diffraction, scanning electron microscopy, dynamic light scattering, and zeta potential measurements. Various additives may be used to moderate and manipulate the surface charge of the particles. Proof-of-concept electrophoretic deposition of the particles produces a uniform layer of CeO2 on graphite. The synthesis and suspension properties are developed as a methodology towards future controlled actinide hydrolysis and film deposition.

4.
Lab Chip ; 22(23): 4493-4500, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36106574

RESUMO

A compact field-deployable microfluidic system has been developed to improve timelines for the rapid analysis of debris in post-detonation nuclear forensics. We used a high-resolution 3D printer to miniaturize typical laboratory-based procedures into a fieldable platform. Microfluidic half-modules were produced for the purification of Pu from excess U, along with a portable alpha chamber for the following isotopic analysis of the Pu stream. A porous PTFE membrane is soaked with a hydrophobic tributyl phosphate (TBP) solution and is placed between two half-modules; separation is performed as a liquid-liquid extraction in an extraction channel across this membrane, where the forward and back-extractions occur within one complete module. Following separation, a 100 µL sampling of the Pu-bearing stream is injected into a small-footprint 3D printed alpha chamber for isotopic assay via alpha spectrometry as part of an online process. In this first demonstration of microfluidic separation coupled with online alpha spectrometry, high extraction yields have been obtained for Pu (98.9 ± 4.0)% and U (97.5 ± 2.5)%. The process uses less than 800 µL of solution with separation chemistry complete within 45 minutes and subsequent alpha spectrometry initiating 25 minutes after separation.


Assuntos
Plutônio , Plutônio/análise , Plutônio/química , Microfluídica , Bioensaio , Análise Espectral , Impressão Tridimensional
5.
Appl Radiat Isot ; 189: 110414, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36095995

RESUMO

During routine operation of the Facility for Rare Isotope Beams (FRIB), radionuclides will accumulate in both the aqueous beam dump and along the beamline in the process of beam purification. These byproduct radionuclides, many of which are far from stability, can be collected and purified for use in other scientific applications in a process called isotope harvesting. In this work, the viability of 88Zr harvesting from solid components was investigated at the National Superconducting Cyclotron Laboratory. A secondary 88Zr beam was stopped in a series of collectors comprised of Al, Cu, W, and Au foils. This work details irradiation of the collector foils and the subsequent radiochemical processing to isolate the deposited 88Zr (and its daughter 88Y) from them. Total average recovery from the Al, Cu, and Au collector foils was (91.3 ± 8.9) % for 88Zr and (95.0 ± 5.8) % for 88Y, respectively, which is over three times higher recovery than in a previous aqueous-phase harvesting experiment. The utility of solid-phase isotope harvesting to access elements such as Zr that readily hydrolyze in near-neutral pH aqueous conditions has been demonstrated for application to harvesting from solid components at FRIB.


Assuntos
Ciclotrons , Zircônio , Radioquímica/métodos , Radioisótopos , Compostos Radiofarmacêuticos
6.
Talanta ; 221: 121638, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33076158

RESUMO

A highly-enriched 233U reference material (>0.99987 n(233U)/n(U)) has been prepared and characterized for use as an isotope dilution mass spectrometry spike. An ion exchange separation was performed on 1 g of high purity 233U to further reduce trace amounts of contaminant Pu in the material. The purified 233U was then prepared as a master solution which was analyzed for molality of uranium by modified Davies and Gray titration. A portion of the master solution was quantitatively diluted and dispensed for reference material units. Selected units were analyzed for verification of uranium amount and to characterize uranium isotope amount ratios by multi-collector inductively couple plasma mass spectrometry. Modelling of spike-corrected isotopic data show that the new spike will enable simultaneous measurements of uranium amount and isotope amount ratios with resulting uncertainties that are substantially less sensitive to over spiking than widely used 233U certified reference materials.

7.
Forensic Sci Int ; 286: 223-232, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29604471

RESUMO

Modern autoradiography techniques based on phosphorimaging technology using image plates (IPs) and digital scanning can identify heterogeneities in activity distributions and reveal material properties, serving to inform subsequent analyses. Here, we have adopted these advantages for applications in nuclear forensics, the technical analysis of radioactive or nuclear materials found outside of legal control to provide data related to provenance, production history, and trafficking route for the materials. IP autoradiography is a relatively simple, non-destructive method for sample characterization that records an image reflecting the relative intensity of alpha and beta emissions from a two-dimensional surface. Such data are complementary to information gathered from radiochemical characterization via bulk counting techniques, and can guide the application of other spatially resolved techniques such as scanning electron microscopy (SEM) and secondary ion mass spectrometry (SIMS). IP autoradiography can image large 2-dimenstional areas (up to 20×40cm), with relatively low detection limits for actinides and other radioactive nuclides, and sensitivity to a wide dynamic range (105) of activity density in a single image. Distributions of radioactivity in nuclear materials can be generated with a spatial resolution of approximately 50µm using IP autoradiography and digital scanning. While the finest grain silver halide films still provide the best possible resolution (down to ∼10µm), IP autoradiography has distinct practical advantages such as shorter exposure times, no chemical post-processing, reusability, rapid plate scanning, and automated image digitization. Sample preparation requirements are minimal, and the analytical method does not consume or alter the sample. These advantages make IP autoradiography ideal for routine screening of nuclear materials, and for the identification of areas of interest for subsequent micro-characterization methods. In this paper we present a summary of our setup, as modified for nuclear forensic sample analysis and related research, and provide examples of data from select samples from the nuclear fuel cycle and historical nuclear test debris.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA