Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175668

RESUMO

ETS2 repressor factor (ERF) insufficiency causes craniosynostosis (CRS4) in humans and mice. ERF is an ETS domain transcriptional repressor regulated by Erk1/2 phosphorylation via nucleo-cytoplasmic shuttling. Here, we analyze the onset and development of the craniosynostosis phenotype in an Erf-insufficient mouse model and evaluate the potential of the residual Erf activity augmented by pharmacological compounds to ameliorate the disease. Erf insufficiency appears to cause an initially compromised frontal bone formation and subsequent multisuture synostosis, reflecting distinct roles of Erf on the cells that give rise to skull and facial bones. We treated animals with Mek1/2 and nuclear export inhibitors, U0126 and KPT-330, respectively, to increase Erf activity by two independent pathways. We implemented both a low dosage locally over the calvaria and a systemic drug administration scheme to evaluate the possible indirect effects from other systems and minimize toxicity. The treatment of mice with either the inhibitors or the administration scheme alleviated the synostosis phenotype with minimal adverse effects. Our data suggest that the ERF level is an important regulator of cranial bone development and that pharmacological modulation of its activity may represent a valid intervention approach both in CRS4 and in other syndromic forms of craniosynostosis mediated by the FGFR-RAS-ERK-ERF pathway.


Assuntos
Craniossinostoses , Fatores de Transcrição , Animais , Camundongos , Craniossinostoses/tratamento farmacológico , Craniossinostoses/genética , Sistema de Sinalização das MAP Quinases , Fosforilação , Proteínas Repressoras , Crânio
2.
Molecules ; 28(15)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37570787

RESUMO

A novel experimental protocol based on a reverse micellar method is presented for the synthesis of graphene oxide (GO)-based hybrids with spin crossover nanoparticles (SCO NPs) of the 1D iron(II) coordination polymer with the formula [Fe(NH2trz)3](Br2). By introducing different quantities of 0.5% and 1.0% of GO (according to iron(II)) into the aqueous phase, two hybrids, NP4 and NP5, were synthesized, respectively. The morphological homogeneity of the NPs on the surface of the GO flakes is greatly improved in comparison to the pristine [Fe(NH2trz)3](Br2) NPs. From the magnetic point of view and at a low magnetic sweep rate of 1 K/min, a two-step hysteretic behavior is observed for NP4 and NP5, where the onset of the low-temperature second step appeared at 40% and 30% of the HS fraction, respectively. For faster sweep rates of 5-10 K/min, the two steps from the cooling branch are progressively smeared out, and the critical temperatures observed are T1/2↑ = 343 K and T1/2↓ = 288 K, with a thermal width of 55 K for both NP4 and NP5. A Raman laser power-assisted protocol was used to monitor the thermal tolerance of the hybrids, while XPS analysis revealed electronic interactions between the SCO NPs and the GO flakes.

3.
Inorg Chem ; 58(20): 13733-13736, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31573185

RESUMO

The diamagnetic two-dimensional Hofmann-type metal-organic framework [ZnII(2-mpz)2Ni(CN)4] has been successfully synthesized along with its isostructural hysteretic spin-crossover FeII analogue in the form of both bulk microcrystalline powder and nanoparticles. Detailed atomic force microscopy topographic study revealed a nanogrowth relationship between the height and length of the nanoparticle.

4.
Inorg Chem ; 57(11): 6391-6400, 2018 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-29775295

RESUMO

While synthetic methods for the grafting of nanoparticles or photoactive molecules onto carbon nanotubes (CNTs) have been developed in the last years, a very limited number of reports have appeared on the grafting of single-molecule magnets (SMMs) onto CNTs. There are many potential causes, mainly focused on the fact that the attachment of molecules on surfaces remains not trivial and their magnetic properties are significantly affected upon attachment. Nevertheless, implementation of this particular type of hybrid material in demanding fields such as spintronic devices makes of utmost importance the investigation of new synthetic protocols for effective grafting. In this paper, we demonstrate a new experimental protocol for the noncovalent grafting of DyIII2 SMM, [Dy2(NO3)2(saph)2(DMF)4], where H2saph = N-salicylidene- o-aminophenol and DMF = N, N-dimethylformamide, onto the surface of functionalized multiwalled CNTs (MWCNTs). We present a simple wet chemical method, followed by an extensive washing protocol, where the cross-referencing of data from high-resolution transmission electron microscopy combined with electron energy loss spectroscopy, conventional magnetic measurements (direct and alternating current), X-ray photoelectron spectroscopy, and Raman spectroscopy was used to investigate the physical properties, chemical nature, and overall magnetic behavior of the resulting hybrids. A key point to the whole synthesis involves the functionalization of MWCNTs with carboxylic groups, which proved to be a powerful strategy for enhancing the ability to process MWCNTs and facilitating the preparation of hybrid composites. While in the majority of analogous hybrid materials the raw carbon material (multiwalled or single-walled nanotubes) is heavily treated to minimize the contribution of contaminant traces of magnetic nanoparticles with important effects on their electronic properties, this method can lead easily to elimination of the largest part of the impurities and provide an effective way to investigate/discriminate the magnetic contribution of the SMM molecules.

5.
Nanomaterials (Basel) ; 14(17)2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39269099

RESUMO

Nanoscale-engineered surfaces induce regulated strain in atomic layers of 2D materials that could be useful for unprecedented photonics applications and for storing and processing quantum information. Nevertheless, these strained structures need to be investigated extensively. Here, we present texture-induced strain distribution in single-layer WS2 (1L-WS2) transferred over Si/SiO2 (285 nm) substrate. The detailed nanoscale landscapes and their optical detection are carried out through Atomic Force Microscopy, Scanning Electron Microscopy, and optical spectroscopy. Remarkable differences have been observed in the WS2 sheet localized in the confined well and at the periphery of the cylindrical geometry of the capped engineered surface. Raman spectroscopy independently maps the whole landscape of the samples, and temperature-dependent helicity-resolved photoluminescence (PL) experiments (off-resonance excitation) show that suspended areas sustain circular polarization from 150 K up to 300 K, in contrast to supported (on un-patterned area of Si/SiO2) and strained 1L-WS2. Our study highlights the impact of the dielectric environment on the optical properties of two-dimensional (2D) materials, providing valuable insights into the selection of appropriate substrates for implementing atomically thin materials in advanced optoelectronic devices.

6.
Materials (Basel) ; 17(17)2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39274785

RESUMO

Surface-Enhanced Raman Spectroscopy (SERS) is a powerful, non-destructive technique for enhancing molecular spectra, first discovered in 1974. This study investigates the enhancement of Raman signals from single- and few-layer molybdenum disulfide (MoS2) when interacting with silver nanoparticles. We synthesized a MoS2 membrane primarily consisting of monolayers and bilayers through a wet chemical vapor deposition method using metal salts. The silver nanoparticles were either directly grown on the MoS2 membrane or placed beneath it. Raman measurements revealed a significant increase in signal intensity from the MoS2 membrane on the silver nanoparticles, attributed to localized surface plasmon resonances that facilitate SERS. Our results indicate that dichalcogenide/plasmonic systems have promising applications in the semiconductor industry.

7.
ACS Appl Mater Interfaces ; 16(37): 49602-49611, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39226175

RESUMO

Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one. Biaxial strain on the other hand, which is an important mode of deformation, remains scarcely studied as far as 2D material devices are concerned. Here, we study the strain transfer efficiency in MoS2- and WSe2-based flexible transistor structures under biaxial deformation. Utilizing Raman spectroscopy, we identify that strains as high as 0.55% can be efficiently and homogeneously transferred from the substrate to the material in the transistor channel. In particular, for the WSe2 transistors, we capture the strain dependence of the higher-order Raman modes and show that they are up to five times more sensitive compared to the first-order ones. Our work demonstrates Raman spectroscopy as a nondestructive probe for strain detection in 2D material-based flexible electronics and deepens our understanding of the strain transfer effects on 2D TMD devices.

8.
ACS Nano ; 18(28): 18151-18159, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38921699

RESUMO

Strain engineering can modulate the properties of two-dimensional (2D) semiconductors for electronic and optoelectronic applications. Recent theory and experiments have found that uniaxial tensile strain can improve the electron mobility of monolayer MoS2, a 2D semiconductor, but the effects of biaxial strain on charge transport are not well characterized in 2D semiconductors. Here, we use biaxial tensile strain on flexible substrates to probe electron transport in monolayer WS2 and MoS2 transistors. This approach experimentally achieves ∼2× higher on-state current and mobility with ∼0.3% applied biaxial strain in WS2, the highest mobility improvement at the lowest strain reported to date. We also examine the mechanisms behind this improvement through density functional theory simulations, concluding that the enhancement is primarily due to reduced intervalley electron-phonon scattering. These results underscore the role of strain engineering in 2D semiconductors for flexible electronics, sensors, integrated circuits, and other optoelectronic applications.

9.
Sci Rep ; 14(1): 15159, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956262

RESUMO

Two-dimensional (2D) graphene and graphene-related materials (GRMs) show great promise for future electronic devices. GRMs exhibit distinct properties under the influence of the substrate that serves as support through uneven compression/ elongation of GRMs surface atoms. Strain in GRM monolayers is the most common feature that alters the interatomic distances and band structure, providing a new degree of freedom that allows regulation of their electronic properties and introducing the field of straintronics. Having an all-optical and minimally invasive detection tool that rapidly probes strain in large areas of GRM monolayers, would be of great importance in the research and development of novel 2D devices. Here, we use Polarization-resolved Second Harmonic Generation (P-SHG) optical imaging to identify strain distribution, induced in a single layer of WS2 placed on a pre-patterned Si/SiO2 substrate with cylindrical wells. By fitting the P-SHG data pixel-by-pixel, we produce spatially resolved images of the crystal armchair direction. In regions where the WS2 monolayer conforms to the pattern topography, a distinct cross-shaped pattern is evident in the armchair image owing to strain. The presence of strain in these regions is independently confirmed using a combination of atomic force microscopy and Raman mapping.

10.
Nano Lett ; 12(2): 687-93, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22165946

RESUMO

We present the first Raman spectroscopic study of Bernal bilayer graphene flakes under uniaxial tension. Apart from a purely mechanical behavior in flake regions where both layers are strained evenly, certain effects stem from inhomogeneous stress distribution across the layers. These phenomena such as the removal of inversion symmetry in bilayer graphene may have important implications in the band gap engineering, providing an alternative route to induce the formation of a band gap.


Assuntos
Grafite/química , Membranas Artificiais , Fônons , Estrutura Molecular , Polímeros/química , Análise Espectral Raman
11.
Dalton Trans ; 52(10): 2937-2941, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36825841

RESUMO

A synthetically controllable two-step spin transition was observed in iron(II) spin crossover nanoparticles of the dehydrated one-dimensional coordination polymer [Fe(NH2trz)3]Br2 (NH2trz = 4-amino-1,2,4-triazole) using the reverse micellar method. The change from two-step to one-step hysteretic characteristics succeeded by changing the reaction time.

12.
Macromol Rapid Commun ; 32(4): 371-7, 2011 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-21433186

RESUMO

In this communication an extended "in-out" polymerization method is presented, which leads to the synthesis of novel heteroarm star block terpolymers of the type A(n)(B-b-C)(n). A four step/one-pot synthetic procedure is pursued using anionic polymerization under an inert atmosphere. The resulted star-shaped terpolymer consists of a divinyl benzene nodule bearing pure polystyrene and poly(hexyl methacrylate)-block-poly(methyl methacrylate) diblock copolymer arms. It is shown that this kind of star terpolymers can self-assemble in the bulk forming lamellae mesophase by arm and block segregation. The mechanical properties of the terpolymer have been examined in detail. Finally, the proposed synthetic procedure can be easily employed in other controlled polymerization methods.


Assuntos
Impressão Molecular/métodos , Nanoestruturas/química , Polímeros/síntese química , Estrutura Molecular , Polimerização , Polímeros/química
13.
ACS Appl Mater Interfaces ; 13(3): 4473-4484, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33432814

RESUMO

We report that few graphene flakes embedded into polymer matrices can be mechanically stretched to relatively large deformation (>1%) in an efficient way by adopting a particular ladder-like morphology consisting of consecutive mono-, bi-, tri-, and four-layer graphene units. In this type of flake architecture, all of the layers adhere to the surrounding polymer inducing similar deformation on the individual graphene layers, preventing interlayer sliding and optimizing the strain transfer efficiency. We have exploited Raman spectroscopy to quantify this effect from a mechanical standpoint. The finite element method and molecular dynamics simulations have been used to interpret the above experimental findings. The results suggest that a step pyramid-like architecture of a flake can be ideal for efficient loading of layered materials embedded into a polymer and that there are two prevailing mechanisms that govern axial stress transfer, namely, interfacial shear transfer and axial transmission through the ends. This concept can be easily applied to other two-dimensional materials and related van der Waals heterostructures fabricated either by mechanical exfoliation or chemical vapor deposition by appropriate patterning. This work opens new perspectives in numerous applications, including high volume fraction composites, flexible electronics, and straintronic devices.

14.
ACS Nano ; 15(2): 2520-2531, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33492930

RESUMO

Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.

15.
Materials (Basel) ; 13(19)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992513

RESUMO

High volume fraction carbon nanotube (CNT) composites (7.5-16% vol.) were fabricated by the impregnation of CNT buckypapers into epoxy resin. To enhance the interfacial reaction with the epoxy resin, the CNTs were modified by two different treatments, namely, an epoxidation treatment and a chemical oxidation. The chemical treatment was found to result in CNT length severance and to affect the porosity of the buckypapers, having an important impact on the physico-mechanical properties of the nanocomposites. Overall, the mechanical, electrical, and thermal properties of the impregnated buckypapers were found to be superior of the neat epoxy resin, offering an attractive combination of mechanical, electrical, and thermal properties for multifunctional composites.

16.
Int J Biol Macromol ; 112: 273-283, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29391227

RESUMO

The accumulation efficiency and the properties of polyhydroxyalkanoates (PHAs) produced from acidified waste glycerol (AWG) and its derivatives via an enriched microbial consortium derived from soil, were investigated in this study. AWG consisted mainly from short chain fatty acids, 1,3 propanediol and residual glycerol, which were also evaluated individually as substrates. Accumulation capacity and yields were estimated after solvent extraction and purification and PHAs were further analyzed in terms of their chemical structure, thermal properties, molecular masses and mechanical properties. The lowest accumulation capacity was noticed for non-acidified waste glycerol as carbon source which led to the generation of P(3HB), whereas for the other carbon sources co-polymers of 3HB with 3HV or 3HHx were produced. Average molecular mass weights were quite high in all cases reaching ~1.8×106Da. The thermal properties and the mechanical behavior of PHAs were shown to be highly affected by their monomeric composition, whereas it was also concluded that DSC and DMA results were in good agreement.


Assuntos
Biodegradação Ambiental , Ácidos Graxos Voláteis/química , Poli-Hidroxialcanoatos/química , Microbiologia do Solo , Carbono/química , Glicerol/química , Peso Molecular , Eliminação de Resíduos
17.
J Biomed Nanotechnol ; 14(1): 86-97, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463367

RESUMO

Graphene has been found to be an excellent heat-conductor due to the high speed of acoustic phonons in its lattice. In this work, we examine in depth a commercial graphene-based waist protector which uses graphene as a heating element. By employing thermal imaging in tandem with Raman microscopy, the thermal characteristics and performance of this device is fully assessed. It will be shown that no pronounced variation in its function is observed up to 3 hours of continuous operation and that the device seems to work effectively as an IR emitter at low power consumption. Temperature fluctuations, associated with a decrease of its electrical resistance are observed after 12 hours uptime and a temperature difference of 15 °C was recorded after 5 days of uninterrupted operation. These effects are thought to be due to the loss of graphene/polymer adhesion resulting from thermal fatigue. Overall, it is demonstrated that graphene can indeed be incorporated as an effective and operational thermal heating system in similar biomedical devices.


Assuntos
Equipamentos e Provisões , Grafite , Temperatura Alta , Calefação
18.
ACS Appl Mater Interfaces ; 10(49): 43192-43202, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30406999

RESUMO

Chemical vapor deposition (CVD) is regarded as a promising fabrication method for the automated, large-scale, production of graphene and other two-dimensional materials. However, its full commercial exploitation is limited by the presence of structural imperfections such as folds, wrinkles, and even cracks that downgrade its physical and mechanical properties. For example, as shown here by means of Raman spectroscopy, the stress transfer from an epoxy matrix to CVD graphene is on average 30% of that of exfoliated monolayer graphene of over 10 µm in dimensions. However, in terms of electrical response, the situation is reversed; the resistance has been found here to decrease by the imposition of mechanical deformation possibly due to the opening up of the structure and the associated increase of electron mobility. This finding paves the way for employing CVD graphene/epoxy composites or coatings as conductive "networks" or bridges in cases for which the conductivity needs to be increased or at least retained when the system is under deformation. The tuning/control of such systems and their operative limitations are discussed here.

19.
ACS Appl Mater Interfaces ; 9(31): 26593-26601, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28722403

RESUMO

Multilayered graphitic materials are not suitable as load-bearers due to their inherent weak interlayer bonding (for example, graphite is a solid lubricant in certain applications). This situation is largely improved when two-dimensional (2D) materials such as a monolayer (SLG) graphene are employed. The downside in these cases is the presence of thermally or mechanically induced wrinkles which are ubiquitous in 2D materials. Here we set out to examine the effect of extensive large wavelength/amplitude wrinkling on the stress transfer capabilities of exfoliated simply supported graphene flakes. Contrary to common belief we present clear evidence that this type of "corrugation" enhances the load-bearing capacity of few-layer graphene as compared to "flat" specimens. This effect is the result of the significant increase of the graphene/polymer interfacial shear stress per increment of applied strain due to wrinkling and paves the way for designing affordable graphene composites with highly improved stress-transfer efficiency.

20.
ACS Appl Mater Interfaces ; 8(34): 22605-14, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27494211

RESUMO

The mechanical behavior of a prototype touch panel display, which consists of two layers of CVD graphene embedded into PET films, is investigated in tension and under contact-stress dynamic loading. In both cases, laser Raman spectroscopy was employed to assess the stress transfer efficiency of the embedded graphene layers. The tensile behavior was found to be governed by the "island-like" microstructure of the CVD graphene, and the stress transfer efficiency was dependent on the size of graphene "islands" but also on the yielding behavior of PET at relatively high strains. Finally, the fatigue tests, which simulate real operation conditions, showed that the maximum temperature gradient developed at the point of "finger" contact after 80 000 cycles does not exceed the glass transition temperature of the PET matrix. The effect of these results on future product development and the design of new graphene-based displays are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA