Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 75(3): 550-566, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34510498

RESUMO

BACKGROUND AND AIMS: Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early posttransplantation organ failure as mitochondrial respiration and ATP production are affected. A shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing methylation-controlled J protein (MCJ) in three preclinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS: Wild-type (WT), MCJ knockout (KO), and Mcj silenced WT mice were subjected to 70% partial hepatectomy (Phx), prolonged IRI, and 70% Phx with IRI. Old and young mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in preclinical models of Phx with or without vascular occlusion and in donor livers. Mice lacking MCJ initiate liver regeneration 12 h faster than WT and show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of Kupffer cells and production of TNF, IL-6, and heparin-binding EGF, accelerating the priming phase and the progression through G1 /S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed a high-fat/high-fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis, and overcomes regenerative limitations. CONCLUSIONS: Boosting mitochondrial activity by silencing MCJ could pave the way for a protective approach after major liver resection or IRI, especially in metabolically compromised, IRI-susceptible organs.


Assuntos
Fígado Gorduroso/metabolismo , Regeneração Hepática/fisiologia , Ativação de Macrófagos/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais , Chaperonas Moleculares , Traumatismo por Reperfusão/metabolismo , Fatores Etários , Animais , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Inativação Gênica/fisiologia , Rejeição de Enxerto/prevenção & controle , Fígado/metabolismo , Transplante de Fígado/métodos , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Traumatismo por Reperfusão/prevenção & controle
2.
NMR Biomed ; 35(2): e4637, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34708437

RESUMO

COVID-19 is a systemic infectious disease that may affect many organs, accompanied by a measurable metabolic dysregulation. The disease is also associated with significant mortality, particularly among the elderly, patients with comorbidities, and solid organ transplant recipients. Yet, the largest segment of the patient population is asymptomatic, and most other patients develop mild to moderate symptoms after SARS-CoV-2 infection. Here, we have used NMR metabolomics to characterize plasma samples from a cohort of the abovementioned group of COVID-19 patients (n = 69), between 3 and 10 months after diagnosis, and compared them with a set of reference samples from individuals never infected by the virus (n = 71). Our results indicate that half of the patient population show abnormal metabolism including porphyrin levels and altered lipoprotein profiles six months after the infection, while the other half show little molecular record of the disease. Remarkably, most of these patients are asymptomatic or mild COVID-19 patients, and we hypothesize that this is due to a metabolic reflection of the immune response stress.


Assuntos
COVID-19/metabolismo , Lipidômica , Espectroscopia de Ressonância Magnética/métodos , Metabolômica , SARS-CoV-2 , COVID-19/imunologia , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Humanos
3.
J Med Chem ; 67(7): 5603-5616, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38513080

RESUMO

Vaccines are one of the greatest achievements of modern medicine. Due to their safer profile, the latest investigations usually focus on subunit vaccines. However, the active component often needs to be coupled with an adjuvant to be effective and properly trigger an immune response. We are developing a new synthetic monosaccharide-based TLR4 agonist, such as glucosamine-derived compounds FP18 and FP20, as a potential vaccine adjuvant. In this study, we present a new FP20 derivative, FP20Hmp, with a hydroxylated ester linked to the glucosamine core. We show that the modification introduced improves the activity of the adjuvant and its solubility. This study presents the synthesis of FP20Hmp, its in vitro characterization, and in vivo activity while coupled with the ovalbumin antigen or in formulation with an enterococcal antigen. We show that FP20Hmp enables increased production of antigen-specific antibodies that bind to the whole bacterium.


Assuntos
Adjuvantes de Vacinas , Enterococcus faecium , Receptor 4 Toll-Like , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Vacinas de Subunidades Antigênicas , Glucosamina
4.
J Med Chem ; 66(4): 3010-3029, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36728697

RESUMO

We disclose here a panel of small-molecule TLR4 agonists (the FP20 series) whose structure is derived from previously developed TLR4 ligands (FP18 series). The new molecules have increased chemical stability and a shorter, more efficient, and scalable synthesis. The FP20 series showed selective activity as TLR4 agonists with a potency similar to FP18. Interestingly, despite the chemical similarity with the FP18 series, FP20 showed a different mechanism of action and immunofluorescence microscopy showed no NF-κB nor p-IRF-3 nuclear translocation but rather MAPK and NLRP3-dependent inflammasome activation. The computational studies related a 3D shape of FP20 series with agonist binding properties inside the MD-2 pocket. FP20 displayed a CMC value lower than 5 µM in water, and small unilamellar vesicle (SUV) formation was observed in the biological activity concentration range. FP20 showed no toxicity in mouse vaccination experiments with OVA antigen and induced IgG production, thus indicating a promising adjuvant activity.


Assuntos
Adjuvantes de Vacinas , Receptor 4 Toll-Like , Camundongos , Animais , Receptor 4 Toll-Like/metabolismo , Adjuvantes Imunológicos/farmacologia , NF-kappa B/metabolismo , Vacinação , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo
5.
Cells ; 9(9)2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948003

RESUMO

Vaccine design traditionally focuses on inducing adaptive immune responses against a sole target pathogen. Considering that many microbes evade innate immune mechanisms to initiate infection, and in light of the discovery of epigenetically mediated innate immune training, the paradigm of vaccine design has the potential to change. The Bacillus Calmette-Guérin (BCG) vaccine induces some level of protection against Mycobacterium tuberculosis (Mtb) while stimulating trained immunity that correlates with lower mortality and increased protection against unrelated pathogens. This review will explore BCG-induced trained immunity, including the required pathways to establish this phenotype. Additionally, potential methods to improve or expand BCG trained immunity effects through alternative vaccine delivery and formulation methods will be discussed. Finally, advances in new anti-Mtb vaccines, other antimicrobial uses for BCG, and "innate memory-based vaccines" will be examined.


Assuntos
Imunidade Adaptativa/efeitos dos fármacos , Vacina BCG/administração & dosagem , COVID-19/prevenção & controle , Epigênese Genética/efeitos dos fármacos , Células Mieloides/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Tuberculose Pulmonar/prevenção & controle , Acetilmuramil-Alanil-Isoglutamina/imunologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , COVID-19/imunologia , COVID-19/virologia , Proteção Cruzada , Epigênese Genética/imunologia , Histonas/genética , Histonas/imunologia , Humanos , Mycobacterium tuberculosis , Células Mieloides/imunologia , Células Mieloides/patologia , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Moléculas com Motivos Associados a Patógenos/imunologia , Moléculas com Motivos Associados a Patógenos/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA