Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 16(1): 140, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28381273

RESUMO

BACKGROUND: A malaria hotspot in the southeastern region of Mauritania, near the Malian border, may hamper malaria control strategies. The objectives were to estimate the prevalence of genetic polymorphisms associated with drug resistance in Plasmodium falciparum isolates and establish baseline data. METHODS: The study was conducted in two malaria-endemic areas in Hodh Elgharbi, situated in the Malian-Mauritanian border area. Blood samples were collected from symptomatic patients. Single nucleotide polymorphisms in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps were genotyped using PCR-restriction fragment length polymorphism, DNA sequencing and primer extension. The Pfmdr1 gene copy number was determined by real-time PCR. RESULTS: Of 280 P. falciparum-infected patients, 193 (68.9%) carried the Pfcrt 76T mutant allele. The Pfmdr1 86Y and 184F mutations were found in 61 (23.1%) of 264 isolates and 167 (67.6%) of 247 samples that were successfully genotyped, respectively. Pfmdr1 mutant alleles 1034C, 1042D and 1246Y were rarely observed. Of 102 P. falciparum isolates analysed, ten (9.8%) had more than one copy of Pfmdr1 gene. The prevalence of isolates harbouring at least triple mutant Pfdhfr 51I, 59R, 108 N/T was 42% (112/268), of which 42 (37.5%) had an additional Pfdhps 437G mutation. The Pfdhps 540E mutation was observed in four isolates (1.5%), including three associated with Pfdhfr triple mutant. Only two quintuple mutants (Pfdhfr-51I-59R-108N Pfdhps-437G-540E) were observed. CONCLUSIONS: The observed mutations in Pfdhfr, Pfdhps, Pfmdr1, and Pfcrt may jeopardize the future of seasonal malaria chemoprevention based on amodiaquine-sulfadoxine-pyrimethamine, intermittent preventive treatment for pregnant women using sulfadoxine-pyrimethamine, and treatment with artesunate-amodiaquine. Complementary studies should be carried out to document the distribution, origin and circulation of P. falciparum populations in this region and more widely in the country to assess the risk of the spread of resistance.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genes de Protozoários , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Doenças Assintomáticas , DNA de Protozoário/química , DNA de Protozoário/genética , Dosagem de Genes , Humanos , Mali , Mauritânia , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Prevalência , Análise de Sequência de DNA
2.
Antimicrob Agents Chemother ; 59(8): 5080-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26055380

RESUMO

Determinations of doxycycline 50% inhibitory concentrations (IC50) for 620 isolates from northwest Thailand were performed via the isotopic method, and the data were analyzed by the Bayesian method and distributed into two populations (mean IC50s of 13.15 µM and 31.60 µM). There was no significant difference between the group with low IC50s versus the group with high IC50s with regard to copy numbers of the Plasmodium falciparum tetQ (pftetQ) gene (P = 0.11) or pfmdt gene (P = 0.87) or the number of PfTetQ KYNNNN repeats (P = 0.72).


Assuntos
Antimaláricos/uso terapêutico , Doxiciclina/uso terapêutico , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Artemisininas/uso terapêutico , Dosagem de Genes/genética , Marcadores Genéticos/genética , Humanos , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Tailândia
3.
Malar J ; 14: 49, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25848972

RESUMO

BACKGROUND: In 2002, the World Health Organization recommended that artemisinin-based combination therapy (ACT) be used to treat uncomplicated malaria. Dihydroartemisinin-piperaquine and artesunate-pyronaridine are two of these new combinations. The aim of the present work was to assess the distribution of the in vitro values of pyronaridine (PND) and piperaquine (PPQ) and to define a cut-off for reduced susceptibility for the two anti-malarial drugs. METHODS: The distribution and range of the 50% inhibitory concentration values (IC50) of PND and PPQ were determined for 313 isolates obtained between 2008 and 2012 from patients hospitalized in France for imported malaria. The statistical Bayesian analysis was designed to answer the specific question of whether Plasmodium falciparum has different phenotypes of susceptibility to PND and PPQ. RESULTS: The PND IC50 values ranged from 0.6 to 84.6 nM, with a geometric mean of 21.1 ± 16.0 nM (standard deviation). These values were classified into three components. The PPQ IC50 values ranged from 9.8 to 217.3 nM, and the geometric mean was 58.0 ± 34.5 nM. All 313 PPQ values were classified into four components. Isolates with IC50 values greater than 60 nM or four-fold greater than 3D7 IC50 are considered isolates that have reduced susceptibility to PND and those with IC50 values greater than 135 nM or 2.3-fold greater than 3D7 IC50 are considered isolates that have reduced susceptibility to PPQ. CONCLUSION: The existence of at least three phenotypes for PND and four phenotypes for PPQ was demonstrated. Based on the cut-off values, 18 isolates (5.8%) and 13 isolates (4.2%) demonstrated reduced susceptibility to PND and PPQ, respectively.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/fisiologia , Malária Falciparum/parasitologia , Naftiridinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , África/epidemiologia , Humanos , Concentração Inibidora 50 , Malária Falciparum/epidemiologia
4.
Antimicrob Agents Chemother ; 58(12): 7032-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25199781

RESUMO

The involvement of Pfmdr1 (Plasmodium falciparum multidrug resistance 1) polymorphisms in antimalarial drug resistance is still debated. Here, we evaluate the association between polymorphisms in Pfmdr1 (N86Y, Y184F, S1034C, N1042D, and D1246Y) and Pfcrt (K76T) and in vitro responses to chloroquine (CQ), mefloquine (MQ), lumefantrine (LMF), quinine (QN), monodesethylamodiaquine (MDAQ), and dihydroartemisinin (DHA) in 174 Plasmodium falciparum isolates from Dakar, Senegal. The Pfmdr1 86Y mutation was identified in 14.9% of the samples, and the 184F mutation was identified in 71.8% of the isolates. No 1034C, 1042N, or 1246Y mutations were detected. The Pfmdr1 86Y mutation was significantly associated with increased susceptibility to MDAQ (P = 0.0023), LMF (P = 0.0001), DHA (P = 0.0387), and MQ (P = 0.00002). The N86Y mutation was not associated with CQ (P = 0.214) or QN (P = 0.287) responses. The Pfmdr1 184F mutation was not associated with various susceptibility responses to the 6 antimalarial drugs (P = 0.168 for CQ, 0.778 for MDAQ, 0.324 for LMF, 0.961 for DHA, 0.084 for QN, and 0.298 for MQ). The Pfmdr1 86Y-Y184 haplotype was significantly associated with increased susceptibility to MDAQ (P = 0.0136), LMF (P = 0.0019), and MQ (P = 0.0001). The additional Pfmdr1 86Y mutation increased significantly the in vitro susceptibility to MDAQ (P < 0.0001), LMF (P < 0.0001), MQ (P < 0.0001), and QN (P = 0.0026) in wild-type Pfcrt K76 parasites. The additional Pfmdr1 86Y mutation significantly increased the in vitro susceptibility to CQ (P = 0.0179) in Pfcrt 76T CQ-resistant parasites.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único , Adulto , Amodiaquina/análogos & derivados , Amodiaquina/farmacologia , Artemisininas/farmacologia , Transporte Biológico , Criança , Cloroquina/farmacologia , Eritrócitos/efeitos dos fármacos , Eritrócitos/parasitologia , Etanolaminas/farmacologia , Feminino , Fluorenos/farmacologia , Expressão Gênica , Haplótipos , Humanos , Concentração Inibidora 50 , Lumefantrina , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Masculino , Mefloquina/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Quinina/farmacologia , Senegal
5.
Malar J ; 13: 407, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25319003

RESUMO

BACKGROUND: As resistance to marketed anti-malarial drugs continues to spread, the need for new molecules active on Plasmodium falciparum-resistant strains grows. Pure (S) enantiomers of amino-alcohol quinolines previously displayed a good in vitro anti-malarial activity. Therefore, a more thorough assessment of their potential clinical use through a rodent model and an in vitro evaluation of their combination with artemisinin was undertaken. METHODS: Screening on a panel of P. falciparum clones with varying resistance profiles and regional origins was performed for the (S)-pentyl and (S)-heptyl substituted quinoline derivatives, followed by an in vitro assessment of their combination with dihydroartemisinin (DHA) on the 3D7 clone and an in vivo assay in a mouse model infected with Plasmodium berghei. Their haemolytic activity was also determined. RESULTS: A steady anti-malarial activity of the compounds tested was found, whatever the resistance profile or the regional origin of the strain. (S)-quinoline derivatives were at least three times more potent than mefloquine (MQ), their structurally close parent. The in vitro combination with DHA yielded an additive or synergic effect for both that was as good as that of the DHA/MQ combination. In vivo, survival rates were similar to those of MQ for the two compounds at a lower dose, despite a lack of clearance of the parasite blood stages. A 50% haemolysis was observed for concentrations at least 1,000-fold higher than the antiplasmodial IC50s. CONCLUSIONS: The results obtained make those two (S)-amino-alcohol quinoline derivatives good candidates for the development of new artemisinin-based combination therapy (ACT), hopefully with fewer neurologic side effects than those currently marketed ACT, including MQ.


Assuntos
Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Malária/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Quinolinas/uso terapêutico , Animais , Antimaláricos/toxicidade , Artemisininas/toxicidade , Modelos Animais de Doenças , Sinergismo Farmacológico , Quimioterapia Combinada , Eritrócitos/efeitos dos fármacos , Feminino , Hemólise , Concentração Inibidora 50 , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Parasitária , Quinolinas/toxicidade , Análise de Sobrevida , Resultado do Tratamento
6.
Malar J ; 13: 327, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25145413

RESUMO

BACKGROUND: New classes of anti-malarial drugs are needed to control the alarming Plasmodium falciparum resistance toward current anti-malarial therapy. The ethnopharmacological approach allows the discovery of original chemical structures from the vegetable biodiversity. Previous studies led to the selection of a bisbenzylisoquinoline, called cepharanthine and isolated from a Cambodian plant: Stephania rotunda. Cepharanthine could exert a mechanism of action different from commonly used drugs. Potential plasmodial targets are reported here. METHODS: To study the mechanism of action of cepharanthine, a combined approach using phenotypic and transcriptomic techniques was undertaken. RESULTS: Cepharanthine blocked P. falciparum development in ring stage. On a culture of synchronized ring stage, the comparisons of expression profiles showed that the samples treated with 5 µM of cepharanthine (IC90) were significantly closer to the initial controls than to the final ones. After a two-way ANOVA (p-value < 0.05) on the microarray results, 1,141 probes among 9,722 presented a significant differential expression.A gene ontology analysis showed that the Maurer's clefts seem particularly down-regulated by cepharanthine. The analysis of metabolic pathways showed an impact on cell-cell interactions (cytoadherence and rosetting), glycolysis and isoprenoid pathways. Organellar functions, more particularly constituted by apicoplast and mitochondrion, are targeted too. CONCLUSION: The blockage at the ring stage by cepharanthine is described for the first time. Transcriptomic approach confirmed that cepharanthine might have a potential innovative antiplasmodial mechanism of action. Thus, cepharanthine might play an ongoing role in the progress on anti-malarial drug discovery efforts.


Assuntos
Antimaláricos/farmacologia , Benzilisoquinolinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/isolamento & purificação , Benzilisoquinolinas/isolamento & purificação , Perfilação da Expressão Gênica , Humanos , Testes de Sensibilidade Parasitária , Stephania/química
7.
Malar J ; 12: 302, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-23988087

RESUMO

BACKGROUND: The medical care of malaria is a clinical emergency because it may develop into severe malaria, which has a high risk of complications and death. One of the major complications of Plasmodium falciparum infections is cerebral malaria (CM), which is responsible for at least 175,000 deaths worldwide each year and has long-term neurological sequelae. Moreover, treatment for CM is only partially effective. Statins are now known to have anti-inflammatory action, to attenuate sepsis and to have neuroprotective effects. In vitro, atorvastatin (AVA) has an anti-malarial activity and has improved the activity of quinine (QN), mefloquine (MQ), and dihydroartemisinin (DHA). OBJECTIVES: This study had two objectives. First, the ability of AVA to enhance DHA efficacy by improving the survival rate for CM and also decreasing signs of CM was evaluated in a murine model of experimental cerebral malaria (ECM), which was designed in C57BL6/N mice. Second, the inflammatory biomarkers were assessed at D6 and D10 in mice treated by DHA and in untreated mice in which clinical signs of CM appear rapidly and death occurs before D12. Both experiments were designed with seven days of treatment with 40 mg/kg AVA combined with five days of 3 mg/kg DHA administered intraperitoneally. RESULTS: AVA in combination with DHA in a therapeutic scheme leads to a significant delay in mouse death, and it has an effect on the onset of CM symptoms and on the level of parasitaemia. Evaluation of the biomarkers highlights the significant difference between treated and control mice for five cytokines and chemokines (Eotaxin-CCL11, IL-13, LIX-CXCL5, MIP1b-CCL4 and MIP2) that are known to have a role in chemotaxis. CONCLUSIONS: The combination of DHA and AVA seems to be effective as a therapeutic scheme for improving mouse survival but less effective for cytokine modulation, which is associated with protection against CM. These results call for clinical trials of AVA as an adjuvant with anti-malarial therapy, especially with artemisinin-based combination therapy, in CM treatment or prevention.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antimaláricos/administração & dosagem , Artemisininas/administração & dosagem , Ácidos Heptanoicos/administração & dosagem , Malária Cerebral/tratamento farmacológico , Pirróis/administração & dosagem , Animais , Atorvastatina , Biomarcadores/análise , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Feminino , Inflamação/patologia , Malária Cerebral/patologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sobrevida , Resultado do Tratamento
8.
Malar J ; 12: 431, 2013 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-24274185

RESUMO

BACKGROUND: Dihydroartemisinin-piperaquine is a new ACT that is administered as single daily dose for three days and has been demonstrated to be tolerated and highly effective for the treatment of uncomplicated Plasmodium falciparum malaria. Piperaquine was used alone to replace chloroquine as the first-line treatment for uncomplicated malaria in China in response to increasing chloroquine resistance in the 1970s. However, the rapid emergence of piperaquine-resistant strains that resulted in the cessation of its use in China in the 1980s, suggests that there is cross-resistance between piperaquine and chloroquine. Very few data are available on cross-resistance between piperaquine and chloroquine, and the data that do exist are often contradictory. METHODS: In total, 280 P. falciparum isolates, collected between April 2008 and June 2012 from patients hospitalized in France with imported malaria from a malaria-endemic country, were assessed ex vivo for piperaquine and chloroquine susceptibilities by using the standard 42-hour 3H-hypoxanthine uptake inhibition method. The chloroquine resistance-associated mutation K76T in pfcrt was also investigated for the 280 isolates. RESULTS: The IC50 for piperaquine ranged from 9.8 nM to 217.3 nM (mean = 81.3 nM. The IC50 for chloroquine ranged from 5.0 nM to 1,918 nM (mean = 83.6 nM. A significant but low correlation was observed between the Log IC50 values for piperaquine and chloroquine (r = 0.145, p < 0.001). However, the coefficient of determination of 0.021 indicates that only 2.1% of the variation in the response to piperaquine is explained by the variation in the response to chloroquine. The mean value for piperaquine was 74.0 nM in the Pfcrt K76 wild-type group (no = 125) and 87.7 nM in the 76 T mutant group (no = 155). This difference was not significant (p = 0.875, Mann Whitney U test). CONCLUSIONS: The present work demonstrates that there was no cross-resistance between piperaquine and chloroquine among 280 P. falciparum isolates and that piperaquine susceptibility is not associated with pfcrt, the gene involved in chloroquine resistance. These results confirm the efficacy of piperaquine in association with dihydroartemisinin and support its use in areas in which parasites are resistant to chloroquine.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Proteínas de Membrana Transportadoras/genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Quinolinas/farmacologia , Resistência a Medicamentos/genética , França , Humanos , Concentração Inibidora 50 , Modelos Estatísticos
9.
Malar J ; 12: 414, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24225377

RESUMO

BACKGROUND: The objective of this study was to evaluate the distribution of a series of independent doxycycline inhibitory concentration 50% (IC50) values to validate the trimodal distribution previously described and to validate the use of the pftetQ and pfmdt genes as molecular markers of decreased in vitro doxycycline susceptibility in Plasmodium falciparum malaria. METHODS: Doxycycline IC50 values, from 484 isolates obtained at the French National Reference Centre for Imported Malaria (Paris) between January 2006 and December 2010, were analysed for the first time by a Bayesian mixture modelling approach to distinguish the different in vitro phenotypic groups by their IC50 values. Quantitative real-time polymerase chain reaction was used to evaluate the pftetQ and pfmdt copy numbers of 89 African P. falciparum isolates that were randomly chosen from the phenotypic groups. RESULTS: The existence of at least three doxycycline phenotypes was demonstrated. The mean doxycycline IC50 was significantly higher in the group with a pftetQ copy number >1 compared to the group with a pftetQ copy number = 1 (33.17 µM versus 17.23 µM) and the group with a pfmdt copy number >1 (28.28 µM versus 16.11 µM). There was a significant difference between the combined low and medium doxycycline IC50 group and the high IC50 group in terms of the per cent of isolates with one or more copy numbers of the pftetQ gene (0% versus 20.69%) or pfmdt gene (8.33% versus 37.93%). In the logistic regression model, the pfmdt and pftetQ copy numbers >1 (odds ratio = 4.65 and 11.47) were independently associated with the high IC50 group. CONCLUSIONS: Copy numbers of pftetQ and pfmdt are potential predictive molecular markers of decreased susceptibility to doxycycline.


Assuntos
Antimaláricos/farmacologia , Doxiciclina/farmacologia , Resistência a Medicamentos , Dosagem de Genes , Marcadores Genéticos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Genes de Protozoários , Humanos , Concentração Inibidora 50 , Malária Falciparum/parasitologia , Testes de Sensibilidade Parasitária , Paris , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase em Tempo Real
10.
Malar J ; 12: 107, 2013 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-23510258

RESUMO

BACKGROUND: In 2006, the Senegalese National Malaria Control Programme recommended artemisinin-based combination therapy (ACT) as the first-line treatment for uncomplicated malaria. Since the introduction of ACT, there have been very few reports on the level of resistance of P. falciparum to anti-malarial drugs. To determine whether parasite susceptibility has been affected by the new anti-malarial policies, an ex vivo susceptibility and drug resistance molecular marker study was conducted on local isolates obtained from the Centre de santé Elizabeth Diouf (Médina, Dakar, Senegal). METHODS: The prevalence of genetic polymorphisms in genes associated with anti-malarial drug resistance, i.e., pfcrt, pfdhfr, pfdhps and pfmdr1, were evaluated for a panel of 165 isolates collected from patients recruited from 17 August 2010 to 6 January 2011. The malaria isolates were assessed for susceptibility to chloroquine (CQ); quinine (QN); monodesethylamodiaquine (MDAQ), the active metabolite of amodiaquine; mefloquine (MQ); lumefantrine (LMF); dihydroartemisinin (DHA), the active metabolite of artemisinin derivatives; and doxycycline (DOX) using the Plasmodium lactate dehydrogenase (pLDH) ELISA. RESULTS: The prevalence of the in vitro resistant isolates, or isolates with reduced susceptibility, was 62.1% for MQ, 24.2% for CQ, 10.3% for DOX, 11.8% MDAQ, 9.7% for QN, 2.9% for LMF and 0% for DHA. The Pfcrt 76T mutation was identified in 43.6% of the samples. The pfmdr1 86Y, 184F and 1246Y mutations were found in 16.2%, 50.0% and 1.6% of the samples, respectively. The pfdhfr 108N, 51I and 59R mutations were identified in 81.9%, 77.4% and 79.4% of the samples, respectively. The double mutant (108N and 51I) was detected in 75.5% of the isolates, and the triple mutant (108N, 51I and 59R) was detected in 73.6% of the isolates. The pfdhps 437G, 436A and 613S mutations were found in 54.4%, 38.6% and 1.2% of the samples, respectively. There was only one double mutant, 437G and 540E, and one quintuple mutant, pfdhfr 108N, 51I and 59R and pfdhps 437G and 540E. The prevalence of the quadruple mutant (pfdhfr 108N, 51I and 59R and pfdhps 437G) was 36.7%. CONCLUSIONS: The results of this study indicate that an intensive surveillance of the in vitro P. falciparum susceptibility to anti-malarial drugs must be conducted in Senegal.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Adolescente , Adulto , Idoso , Sobrevivência Celular , Criança , Pré-Escolar , DNA de Protozoário/genética , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , L-Lactato Desidrogenase/análise , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Testes de Sensibilidade Parasitária , Plasmodium falciparum/isolamento & purificação , Polimorfismo Genético , Proteínas de Protozoários/genética , Senegal , Adulto Jovem
11.
Malar J ; 12: 34, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23347727

RESUMO

BACKGROUND: An accurate diagnosis is essential for the rapid and appropriate treatment of malaria. The accuracy of the histidine-rich protein 2 (PfHRP2)-based rapid diagnostic test (RDT) Palutop+4® was assessed here. One possible factor contributing to the failure to detect malaria by this test is the diversity of the parasite PfHRP2 antigens. METHODS: PfHRP2 detection with the Palutop+4® RDT was carried out. The pfhrp2 and pfhrp3 genes were amplified and sequenced from 136 isolates of Plasmodium falciparum that were collected in Dakar, Senegal from 2009 to 2011. The DNA sequences were determined and statistical analyses of the variation observed between these two genes were conducted. The potential impact of PfHRP2 and PfHRP3 sequence variation on malaria diagnosis was examined. RESULTS: Seven P. falciparum isolates (5.9% of the total isolates, regardless of the parasitaemia; 10.7% of the isolates with parasitaemia ≤0.005% or ≤250 parasites/µl) were undetected by the PfHRP2 Palutop+4® RDT. Low parasite density is not sufficient to explain the PfHRP2 detection failure. Three of these seven samples showed pfhrp2 deletion (2.4%). The pfhrp3 gene was deleted in 12.8%. Of the 122 PfHRP2 sequences, 120 unique sequences were identified. Of the 109 PfHRP3 sequences, 64 unique sequences were identified. Using the Baker's regression model, at least 7.4% of the P. falciparum isolates in Dakar were likely to be undetected by PfHRP2 at a parasite density of ≤250 parasites/µl (slightly lower than the evaluated prevalence of 10.7%). This predictive prevalence increased significantly between 2009 and 2011 (P = 0.0046). CONCLUSION: In the present work, 10.7% of the isolates with a parasitaemia ≤0.005% (≤250 parasites/µl) were undetected by the PfHRP2 Palutop+4® RDT (7.4% by the predictive Baker'model). In addition, all of the parasites with pfhrp2 deletion (2.4% of the total samples) and 2.1% of the parasites with parasitaemia >0.005% and presence of pfhrp2 were not detected by PfHRP2 RDT. PfHRP2 is highly polymorphic in Senegal. Efforts should be made to more accurately determine the prevalence of non-sensitive parasites to pfHRP2.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Plasmodium falciparum/isolamento & purificação , Polimorfismo Genético , Proteínas de Protozoários/genética , Erros de Diagnóstico/estatística & dados numéricos , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Senegal , Sensibilidade e Especificidade , Análise de Sequência de DNA
12.
Malar J ; 12: 189, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23758769

RESUMO

BACKGROUND: Although the World Health Organization recommends replacing quinine (QN) by artesunate due to its increased efficacy and the higher tolerance to the drug in both adults and children, QN remains a first-line treatment for severe malaria, especially in Africa. Investigations of microsatellite Pfnhe-1 ms4760 polymorphisms in culture-adapted isolates from around the world have revealed that an increase in the number of DNNND amino acid motifs was associated with decreased QN susceptibility, whereas an increase in the number of DDNHNDNHNND motifs was associated with increased QN susceptibility. METHODS: In this context, to further analyse associations between Pfnhe-1 ms4760 polymorphisms and QN susceptibility, 393 isolates freshly collected between October 2009 and January 2010 and July 2010 and February 2011, respectively, at the Hôpital Principal de Dakar, Senegal were assessed ex vivo for QN susceptibility, and their genes were amplified and sequenced. RESULTS: Of the 393 Plasmodium falciparum clinical isolates collected, 145 were successfully cultured. The 145 QN IC50s ranged from 2.1 to 1291 nM, and 17 isolates (11.7%) exceed the QN reduced susceptibility threshold of 611 nM. Among the 393 P. falciparum clinical isolates, 47 different alleles were observed. The three most prevalent profiles were ms4760-1 (no = 72; 18.3%), ms4760-3 (no = 65; 16.5%) and ms4760-7 (no = 40; 10.2%). There were no significant associations observed between QN IC50 values and i) the number of repeats of DNNND in block II (p = 0.0955, Kruskal-Wallis test); ii) the number of repeats of DDNHNDNHNND in block V (p = 0.1455, Kruskal-Wallis test); or iii) ms4760 profiles (p = 0.1809, Kruskal-Wallis test). CONCLUSIONS: Pfnhe-1 ms4760 was highly diverse in parasite isolates from Dakar (47 different profiles). Three profiles (ms4760-1, ms4760-3 and ms4760-7) were predominant. The number of repeats for block II (DNNND) or block V (DDNHNDNHNND) was not significantly associated with QN susceptibility. New studies, and especially in vivo studies, are necessary to confirm the role of Pfnhe-1 ms4760 as a marker of QN resistance.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Polimorfismo Genético , Quinina/farmacologia , Trocadores de Sódio-Hidrogênio/genética , Adulto , Criança , Pré-Escolar , DNA de Protozoário/química , DNA de Protozoário/genética , Genótipo , Humanos , Testes de Sensibilidade Parasitária , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Proteínas de Protozoários/genética , Senegal , Análise de Sequência de DNA
13.
Malar J ; 12: 201, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23758989

RESUMO

BACKGROUND: Case management of imported malaria within the context of malaria pre-elimination is increasingly considered to be relevant because of the risk of resurgence. The assessment of malaria importation would provide key data i) to select countries with propitious conditions for pre-elimination phase and ii) to predict its feasibility. Recently, a sero-prevalence study in Djibouti indicated low malaria prevalence, which is propitious for the implementation of pre-elimination, but data on the extent of malaria importation remain unknown. METHODS: Djiboutian plasmodial populations were analysed over an eleven-year period (1998, 1999, 2002 and 2009). The risk of malaria importation was indirectly assessed by using plasmodial population parameters. Based on 5 microsatellite markers, expected heterozygosity (H.e.), multiplicity of infection, pairwise Fst index, multiple correspondence analysis and individual genetic relationship were determined. The prevalence of single nucleotide polymorphisms associated with pyrimethamine resistance was also determined. RESULTS: Data indicated a significant decline in genetic diversity (0.51, 0.59, 0.51 and 0 in 1998, 1999, 2002 and 2009, respectively) over the study period, which is inconsistent with the level of malaria importation described in a previous study. This suggested that Djiboutian malaria situation may have benefited from the decline of malaria prevalence that occurred in neighbouring countries, in particular in Ethiopia. The high Fst indices derived from plasmodial populations from one study period to another (0.12 between 1999 and 2002, and 0.43 between 2002 and 2009) suggested a random sampling of parasites, probably imported from neighbouring countries, leading to oligo-clonal expansion of few different strains during each transmission season. Nevertheless, similar genotypes observed during the study period suggested recurrent migrations and imported malaria. CONCLUSION: In the present study, the extent of genetic diversity was used to assess the risk of malaria importation in the low malaria transmission setting of Djibouti. The molecular approach highlights i) the evolution of Djiboutian plasmodial population profiles that are consistent and compatible with Djiboutian pre-elimination goals and ii) the necessity to implement the monitoring of plasmodial populations and interventions at the regional scale in the Horn of Africa to ensure higher efficiency of malaria control and elimination.


Assuntos
Erradicação de Doenças , Variação Genética , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Antimaláricos/farmacologia , DNA de Protozoário/genética , Djibuti , Resistência a Medicamentos , Genótipo , Humanos , Repetições de Microssatélites , Epidemiologia Molecular , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Pirimetamina/farmacologia
14.
Malar J ; 11: 45, 2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22333675

RESUMO

BACKGROUND: The aim of the present work was to assess i) ex vivo activity of pyronaridine (PND) and piperaquine (PPQ), as new components of artemisinin-based combination therapy (ACT), to define susceptibility baseline, ii) their activities compared to other partner drugs, namely monodesethylamodiaquine (MDAQ), lumefantrine (LMF), mefloquine (MQ), artesunate (AS) and dihydroartemisinin (DHA) against 181 Plasmodium falciparum isolates from African countries, India and Thailand, and iii) in vitro cross-resistance with other quinoline drugs, chloroquine (CQ) or quinine (QN). METHODS: The susceptibility of the 181 P. falciparum isolates to the nine anti-malarial drugs was assessed using the standard 42-hours 3H-hypoxanthine uptake inhibition method. RESULTS: The IC50 values for PND ranged from 0.55 to 80.0 nM (geometric mean = 19.9 nM) and from 11.8 to 217.3 nM for PPQ (geometric mean = 66.8 nM). A significant positive correlation was shown between responses to PPQ and PND responses (rho = 0.46) and between PPQ and MDAQ (rho = 0.30). No significant correlation was shown between PPQ IC50 and responses to other anti-malarial drugs. A significant positive correlation was shown between responses to PND and MDAQ (rho = 0.37), PND and LMF (rho = 0.28), PND and QN (rho = 0.24), PND and AS (rho = 0.19), PND and DHA (rho = 0.18) and PND and CQ (rho = 0.16). All these coefficients of correlation are too low to suggest cross-resistance between PPQ or PND and the other drugs. CONCLUSIONS: In this study, the excellent anti-malarial activity of PPQ and PND was confirmed. The absence of cross-resistance with quinolines and artemisinin derivatives is consistent with the efficacy of the combinations of PPQ and DHA or PND and AS in areas where parasites are resistant to conventional anti-malarial drugs.


Assuntos
Antimaláricos/farmacologia , Naftiridinas/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , África , Resistência a Medicamentos , Humanos , Hipoxantina/metabolismo , Índia , Concentração Inibidora 50 , Testes de Sensibilidade Parasitária/métodos , Plasmodium falciparum/isolamento & purificação , Tailândia , Trítio/metabolismo
15.
Malar J ; 11: 197, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22694921

RESUMO

BACKGROUND: As a result of the widespread resistance to chloroquine and sulphadoxine-pyrimethamine, artemisinin-based combination therapy (ACT) (including artemether-lumefantrine and artesunate-amodiaquine) has been recommended as a first-line anti-malarial regimen in Senegal since 2006. Intermittent preventive treatments with anti-malarial drugs based on sulphadoxine-pyrimethamine are also given to children or pregnant women once per month during the transmission season. Since 2006, there have been very few reports on the susceptibility of Plasmodium falciparum to anti-malarial drugs. To estimate the prevalence of resistance to several anti-malarial drugs since the introduction of the widespread use of ACT, the presence of molecular markers associated with resistance to chloroquine and sulphadoxine-pyrimethamine was assessed in local isolates at the military hospital of Dakar. METHODS: The prevalence of genetic polymorphisms in genes associated with anti-malarial drug resistance, i.e., Pfcrt, Pfdhfr, Pfdhps and Pfmdr1, and the copy number of Pfmdr1 were evaluated for a panel of 174 isolates collected from patients recruited at the military hospital of Dakar from 14 October 2009 to 19 January 2010. RESULTS: The Pfcrt 76T mutation was identified in 37.2% of the samples. The Pfmdr1 86Y and 184F mutations were found in 16.6% and 67.6% of the tested samples, respectively. Twenty-eight of the 29 isolates with the 86Y mutation were also mutated at codon 184. Only one isolate (0.6%) had two copies of Pfmdr1. The Pfdhfr 108N/T, 51I and 59R mutations were identified in 82.4%, 83.5% and 74.1% of the samples, respectively. The double mutant (108N and 51I) was detected in 83.5% of the isolates, and the triple mutant (108N, 51I and 59R) was detected in 75.3%. The Pfdhps 437G, 436F/A and 613S mutations were found in 40.2%, 35.1% and 1.8% of the samples, respectively. There was no double mutant (437G and 540E) or no quintuple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G and 540E). The prevalence of the quadruple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G) was 36.5%. CONCLUSIONS: Since 2004, the prevalence of chloroquine resistance had decreased. The prevalence of isolates with high-level pyrimethamine resistance is 83.5%. The prevalence of isolates resistant to sulphadoxine is 40.2%. However, no quintuple mutant (Pfdhfr 108N, 51I and 59R and Pfdhps 437G and 540E), which is associated with a high level of sulphadoxine-pyrimethamine resistance, has been identified to date. The resistance to amodiaquine remains moderate.


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Resistência a Medicamentos , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Pirimetamina/farmacologia , Sulfadoxina/farmacologia , Combinação de Medicamentos , Feminino , Dosagem de Genes , Frequência do Gene , Genes de Protozoários/genética , Hospitais Militares , Humanos , Masculino , Mutação de Sentido Incorreto , Plasmodium falciparum/isolamento & purificação , Mutação Puntual , Prevalência , Senegal
16.
Malar J ; 11: 146, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22551095

RESUMO

The increased spread of drug-resistant malaria highlights the need for alternative drugs for treatment and chemoprophylaxis. The combination of atovaquone-proguanil (Malarone®) has shown high efficacy against Plasmodium falciparum with only mild side-effects. Treatment failures have been attributed to suboptimal dosages or to parasite resistance resulting from a point mutation in the cytochrome b gene. In this paper, a case of early treatment failure was reported in a patient treated with atovaquone-proguanil; this failure was not associated with a mutation in the parasite cytochrome b gene, with impaired drug bioavailability, or with re-infection.


Assuntos
Antimaláricos/administração & dosagem , Atovaquona/administração & dosagem , Malária Falciparum/tratamento farmacológico , Proguanil/administração & dosagem , Côte d'Ivoire , Citocromos b/genética , Combinação de Medicamentos , Humanos , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Falha de Tratamento
17.
Malar J ; 11: 395, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23190709

RESUMO

BACKGROUND: Formerly known as a hypoendemic malaria country, the Republic of Djibouti declared the goal of pre-eliminating malaria in 2006. The aim of the present study was to evaluate the prevalence of Plasmodium falciparum, Plasmodium vivax and mixed infections in the Djiboutian population by using serological tools and to identify potential determinants of the disease and hotspots of malaria transmission within the country. METHODS: The prevalence of P. falciparum and P. vivax within the districts of the capital city and the rest of the Republic of Djibouti were assessed using 13 and 2 serological markers, respectively. The relationship between the immune humeral response to P. falciparum and P. vivax and variables such as age, gender, wealth status, urbanism, educational level, distance to rivers/lakes, living area, having fever in the last month, and staying in a malaria-endemic country more than one year was estimated and analysed by questionnaires administered to 1910 Djiboutians. Multivariate ordinal logistic regression models of the immune humeral response were obtained for P. falciparum and P. vivax. RESULTS: The P. falciparum and P. vivax seroprevalence rates were 31.5%, CI95% [29.4-33.7] and 17.5%, CI95% [15.8-19.3], respectively. Protective effects against P. falciparum and P. vivax were female gender, educational level, and never having visited a malaria-endemic area for more than one year. For P. falciparum only, a protective effect was observed for not having a fever in the last month, living more than 1.5 km away from lakes and rivers, and younger ages. CONCLUSIONS: This is the first study that assessed the seroprevalence of P. vivax in the Republic of Djibouti. It is necessary to improve knowledge of this pathogen in order to create an effective elimination programme. As supported by recent observations on the subject, the Republic of Djibouti has probably demonstrated a real decrease in the transmission of P. falciparum in the past seven years, which should encourage authorities to improve efforts toward elimination.


Assuntos
Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Adolescente , Adulto , Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/sangue , Estudos Transversais , Djibuti/epidemiologia , Fatores Epidemiológicos , Feminino , Humanos , Modelos Logísticos , Malária Falciparum/imunologia , Malária Falciparum/transmissão , Malária Vivax/imunologia , Malária Vivax/transmissão , Masculino , Pessoa de Meia-Idade , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Fatores de Risco , Estudos Soroepidemiológicos , Testes Sorológicos , Adulto Jovem
18.
Antimicrob Agents Chemother ; 55(5): 2472-4, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21343466

RESUMO

The geometric mean 50% inhibitory concentration (IC50) for Proveblue, a methylene blue complying with the European Pharmacopoeia, was more active on 23 P. falciparum strains than chloroquine, quinine, mefloquine, monodesethylamodiaquine, and lumefantrine. We did not find significant associations between the Proveblue IC50 and polymorphisms in the pfcrt, pfmdr1, pfmdr2, pfmrp, and pfnhe-1 genes or the copy numbers of the pfmdr1 and pfmdr2 genes, all of which are involved in antimalarial resistance.


Assuntos
Antimaláricos/farmacologia , Azul de Metileno/farmacologia , Plasmodium falciparum/genética , Amodiaquina/análogos & derivados , Amodiaquina/farmacologia , Cloroquina/farmacologia , Etanolaminas/farmacologia , Fluorenos/farmacologia , Concentração Inibidora 50 , Lumefantrina , Mefloquina/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo Genético/genética , Proteínas de Protozoários/genética , Quinina/farmacologia
19.
Malar J ; 10: 8, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21235757

RESUMO

BACKGROUND: The aim of this study was to evaluate the cultivation system in which the proper atmospheric conditions for growing Plasmodium falciparum parasites were maintained in a sealed bag. The Genbag® system associated with the atmospheric generators for capnophilic bacteria Genbag CO2® was used for in vitro susceptibility test of nine standard anti-malarial drugs and compared to standard incubator conditions. METHODS: The susceptibility of 36 pre-identified parasite strains from a wide panel of countries was assessed for nine standard anti-malarial drugs (chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone and pyrimethamine) by the standard 42-hour 3H-hypoxanthine uptake inhibition method using the Genbag CO2® system and compared to controlled incubator conditions (5% CO2 and 10% O2). RESULTS: The counts per minute values in the control wells in incubator atmospheric conditions (5% CO2 and 10% O2) were significantly higher than those of Genbag® conditions (2738 cpm vs 2282 cpm, p < 0.0001). The geometric mean IC50 estimated under the incubator atmospheric conditions was significantly lower for atovaquone (1.2 vs 2.1 nM, p = 0.0011) and higher for the quinolines: chloroquine (127 vs 94 nM, p < 0.0001), quinine (580 vs 439 nM, p < 0.0001), monodesethylamodiaquine (41.4 vs 31.8 nM, p < 0.0001), mefloquine (57.5 vs 49.7 nM, p = 0.0011) and lumefantrine (23.8 vs 21.2 nM, p = 0.0044). There was no significant difference of IC50 between the 2 conditions for dihydroartemisinin, doxycycline and pyrimethamine.To reduce this difference in term of anti-malarial susceptibility, a specific cut-off was estimated for each drug under Genbag® conditions by regression. The cut-off was estimated at 77 nM for chloroquine (vs 100 nM in 10% O2), 611 nM for quinine (vs 800 nM), 30 nM for mefloquine (vs 30 nM), 61 nM for monodesethylamodiaquine (vs 80 nM) and 1729 nM for pyrimethamine (vs 2000 nM). CONCLUSIONS: The atmospheric generators for capnophilic bacteria Genbag CO2® is an appropriate technology that can be transferred to the field for epidemiological surveys of drug-resistant malaria. The present data suggest the importance of the gas mixture on in vitro microtest results for anti-malarial drugs and the importance of determining the microtest conditions before comparing and analysing the data from different laboratories and concluding on malaria resistance.


Assuntos
Antimaláricos/farmacologia , Dióxido de Carbono/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Testes de Sensibilidade Parasitária/métodos
20.
Malar J ; 9: 317, 2010 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-21059211

RESUMO

BACKGROUND: Assessment exposure and immunity to malaria is an important step in the fight against the disease. Increased malaria infection in non-immune travellers under anti-malarial chemoprophylaxis, as well as the implementation of malaria elimination programmes in endemic countries, raises new issues that pertain to these processes. Notably, monitoring malaria immunity has become more difficult in individuals showing low antibody (Ab) responses or taking medications against the Plasmodium falciparum blood stages. Commonly available techniques in malaria seroepidemiology have limited sensitivity, both against pre-erythrocytic, as against blood stages of the parasite. Thus, the aim of this study was to develop a sensitive tool to assess the exposure to malaria or to bites from the vector Anopheles gambiae, despite anti-malarial prophylactic treatment. METHODS: Ab responses to 13 pre-erythrocytic P. falciparum-specific peptides derived from the proteins Lsa1, Lsa3, Glurp, Salsa, Trap, Starp, CSP and Pf11.1, and to 2 peptides specific for the Anopheles gambiae saliva protein gSG6 were tested. In this study, 253 individuals from three Senegalese areas with different transmission intensities and 124 European travellers exposed to malaria during a short period of time were included. RESULTS: The multiplex assay was optimized for most but not all of the antigens. It was rapid, reproducible and required a small volume of serum. Proportions of Ab-positive individuals, Ab levels and the mean number of antigens (Ags) recognized by each individual increased significantly with increases in the level of malaria exposure. CONCLUSION: The multiplex assay developed here provides a useful tool to evaluate immune responses to multiple Ags in large populations, even when only small amounts of serum are available, or Ab titres are low, as in case of travellers. Finally, the relationship of Ab responses with malaria endemicity levels provides a way to monitor exposure in differentially exposed autochthonous individuals from various endemicity areas, as well as in travellers who are not immune, thus indirectly assessing the parasite transmission and malaria risk in the new eradication era.


Assuntos
Anopheles/imunologia , Anticorpos/sangue , Mordeduras e Picadas de Insetos/diagnóstico , Malária/diagnóstico , Parasitologia/métodos , Plasmodium falciparum/imunologia , Adulto , Animais , Europa (Continente) , Humanos , Imunoensaio/métodos , Reprodutibilidade dos Testes , Saliva/imunologia , Senegal , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA