Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
EMBO Rep ; 25(5): 2479-2510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38684907

RESUMO

The most prevalent genetic cause of both amyotrophic lateral sclerosis and frontotemporal dementia is a (GGGGCC)n nucleotide repeat expansion (NRE) occurring in the first intron of the C9orf72 gene (C9). Brain glucose hypometabolism is consistently observed in C9-NRE carriers, even at pre-symptomatic stages, but its role in disease pathogenesis is unknown. Here, we show alterations in glucose metabolic pathways and ATP levels in the brains of asymptomatic C9-BAC mice. We find that, through activation of the GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in C9-BAC mice. We also show that one of the arginine-rich DPRs (PR) could directly contribute to glucose metabolism and metabolic stress by inhibiting glucose uptake in neurons. Our findings provide a potential mechanistic link between energy imbalances and C9-ALS/FTD pathogenesis and suggest a feedforward loop model with potential opportunities for therapeutic intervention.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Glucose , Fenótipo , Proteína ran de Ligação ao GTP , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Modelos Animais de Doenças , Expansão das Repetições de DNA/genética , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Glucose/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Biossíntese de Proteínas , Proteína ran de Ligação ao GTP/metabolismo
2.
Glia ; 70(7): 1426-1449, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35474517

RESUMO

Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.


Assuntos
Esclerose Lateral Amiotrófica , Sarcoma , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Camundongos , Neurônios Motores/patologia , Sarcoma/metabolismo , Sarcoma/patologia , Fator de Necrose Tumoral alfa/metabolismo
3.
FASEB J ; 33(12): 13775-13793, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31577916

RESUMO

More than half of spinal cord injury (SCI) cases occur in the cervical region, leading to respiratory dysfunction due to damaged neural circuitry that controls critically important muscles such as the diaphragm. The C3-C5 spinal cord is the location of phrenic motor neurons (PhMNs) that are responsible for diaphragm activation; PhMNs receive bulbospinal excitatory drive predominately from supraspinal neurons of the rostral ventral respiratory group (rVRG). Cervical SCI results in rVRG axon damage, PhMN denervation, and consequent partial-to-complete paralysis of hemidiaphragm. In a rat model of C2 hemisection SCI, we expressed the axon guidance molecule, brain-derived neurotrophic factor (BDNF), selectively at the location of PhMNs (ipsilateral to lesion) to promote directed growth of rVRG axons toward PhMN targets by performing intraspinal injections of adeno-associated virus serotype 2 (AAV2)-BDNF vector. AAV2-BDNF promoted significant functional diaphragm recovery, as assessed by in vivo electromyography. Within the PhMN pool ipsilateral to injury, AAV2-BDNF robustly increased sprouting of both spared contralateral-originating rVRG axons and serotonergic fibers. Furthermore, AAV2-BDNF significantly increased numbers of putative monosynaptic connections between PhMNs and these sprouting rVRG and serotonergic axons. These findings show that targeting circuit plasticity mechanisms involving the enhancement of synaptic inputs from spared axon populations is a powerful strategy for restoring respiratory function post-SCI.-Charsar, B. A., Brinton, M. A., Locke, K., Chen, A. Y., Ghosh, B., Urban, M. W., Komaravolu, S., Krishnamurthy, K., Smit, R., Pasinelli, P., Wright, M. C., Smith, G. M., Lepore, A. C. AAV2-BDNF promotes respiratory axon plasticity and recovery of diaphragm function following spinal cord injury.


Assuntos
Axônios/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Diafragma/metabolismo , Diafragma/fisiologia , Parvovirinae/metabolismo , Recuperação de Função Fisiológica/fisiologia , Traumatismos da Medula Espinal/metabolismo , Animais , Axônios/fisiologia , Dependovirus , Feminino , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Ratos , Ratos Sprague-Dawley , Respiração , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
4.
Glia ; 66(5): 1016-1033, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29380416

RESUMO

Mutations in fused in sarcoma (FUS) are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting both upper and lower motor neurons. While it is established that astrocytes contribute to the death of motor neurons in ALS, the specific contribution of mutant FUS (mutFUS) through astrocytes has not yet been studied. Here, we used primary astrocytes expressing a N-terminally GFP tagged R521G mutant or wild-type FUS (WTFUS) and show that mutFUS-expressing astrocytes undergo astrogliosis, damage co-cultured motor neurons via activation of an inflammatory response and produce conditioned medium (ACM) that is toxic to motor neurons in isolation. Time lapse imaging shows that motor neuron cultures exposed to mutFUS ACM, but not WTFUS ACM, undergo significant cell loss, which is preceded by progressive degeneration of neurites. We found that Tumor Necrosis Factor-Alpha (TNFα) is secreted into ACM of mutFUS-expressing astrocytes. Accordingly, mutFUS astrocyte-mediated motor neuron toxicity is blocked by targeting soluble TNFα with neutralizing antibodies. We also found that mutant astrocytes trigger changes to motor neuron AMPA receptors (AMPAR) that render them susceptible to excitotoxicity and AMPAR-mediated cell death. Our data provide the first evidence of astrocytic involvement in FUS-ALS, identify TNFα as a mediator of this toxicity, and provide several potential therapeutic targets to protect motor neurons in FUS-linked ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Astrócitos/metabolismo , Morte Celular/fisiologia , Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Técnicas de Cocultura , Meios de Cultivo Condicionados , Gliose/patologia , Humanos , Camundongos , Neurônios Motores/patologia , Mutação , NF-kappa B/metabolismo , Neuritos/metabolismo , Neuritos/patologia , Proteína FUS de Ligação a RNA/genética , Ratos , Receptores de AMPA/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia
5.
Glia ; 64(8): 1298-313, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27158936

RESUMO

The efficacy of drugs targeting the CNS is influenced by their limited brain access, which can lead to complete pharmacoresistance. Recently a tissue-specific and selective upregulation of the multidrug efflux transporter ABCB1 or P-glycoprotein (P-gp) in the spinal cord of both patients and the mutant SOD1-G93A mouse model of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease that prevalently kills motor neurons has been reported. Here, we extended the analysis of P-gp expression in the SOD1-G93A ALS mouse model and found that P-gp upregulation was restricted to endothelial cells of the capillaries, while P-gp expression was not detected in other cells of the spinal cord parenchyma such as astrocytes, oligodendrocytes, and neurons. Using both in vitro human and mouse models of the blood-brain barrier (BBB), we found that mutant SOD1 astrocytes were driving P-gp upregulation in endothelial cells. In addition, a significant increase in reactive oxygen species production, Nrf2 and NFκB activation in endothelial cells exposed to mutant SOD1 astrocytes in both human and murine BBB models were observed. Most interestingly, astrocytes expressing FUS-H517Q, a different familial ALS-linked mutated gene, also drove NFκB-dependent upregulation of P-gp. However, the pathway was not dependent on oxidative stress but rather involved TNF-α release. Overall, these findings indicated that nuclear translocation of NFκB was a converging mechanism used by endothelial cells of the BBB to upregulate P-gp expression in mutant SOD1-linked ALS and possibly other forms of familial ALS. GLIA 2016 GLIA 2016;64:1298-1313.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Astrócitos/metabolismo , Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Astrócitos/patologia , Barreira Hematoencefálica/patologia , Capilares/metabolismo , Capilares/patologia , Linhagem Celular , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Camundongos Transgênicos , NF-kappa B/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
7.
Acta Neuropathol ; 131(4): 605-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26728149

RESUMO

Amyotrophic lateral sclerosis is characterized by progressive loss of motor neurons in the brain and spinal cord. Mutations in several genes, including FUS, TDP43, Matrin 3, hnRNPA2 and other RNA-binding proteins, have been linked to ALS pathology. Recently, Pur-alpha, a DNA/RNA-binding protein was found to bind to C9orf72 repeat expansions and could possibly play a role in the pathogenesis of ALS. When overexpressed, Pur-alpha mitigates toxicities associated with Fragile X tumor ataxia syndrome (FXTAS) and C9orf72 repeat expansion diseases in Drosophila and mammalian cell culture models. However, the function of Pur-alpha in regulating ALS pathogenesis has not been fully understood. We identified Pur-alpha as a novel component of cytoplasmic stress granules (SGs) in ALS patient cells carrying disease-causing mutations in FUS. When cells were challenged with stress, we observed that Pur-alpha co-localized with mutant FUS in ALS patient cells and became trapped in constitutive SGs. We also found that FUS physically interacted with Pur-alpha in mammalian neuronal cells. Interestingly, shRNA-mediated knock down of endogenous Pur-alpha significantly reduced formation of cytoplasmic stress granules in mammalian cells suggesting that Pur-alpha is essential for the formation of SGs. Furthermore, ectopic expression of Pur-alpha blocked cytoplasmic mislocalization of mutant FUS and strongly suppressed toxicity associated with mutant FUS expression in primary motor neurons. Our data emphasizes the importance of stress granules in ALS pathogenesis and identifies Pur-alpha as a novel regulator of SG dynamics.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica/genética , Neurônios Motores/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Antibacterianos/farmacologia , Arsenitos/farmacologia , Encéfalo/citologia , Proteínas de Transporte/metabolismo , Células Cultivadas , Grânulos Citoplasmáticos/efeitos dos fármacos , DNA Helicases , Proteínas de Ligação a DNA/genética , Doxiciclina/farmacologia , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína FUS de Ligação a RNA/genética , Ratos , Ratos Sprague-Dawley , Compostos de Sódio/farmacologia , Fatores de Transcrição/genética
8.
Biochim Biophys Acta ; 1842(8): 1295-301, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24568860

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an adult onset characterized by loss of both upper and lower motor neurons. In ~10% of cases, patients developed ALS with an apparent genetic linkage (familial ALS or fALS). Approximately 20% of fALS displays mutations in the SOD1 gene encoding superoxide dismutase 1. There are many proposed cellular and molecular mechanisms among which, mitochondrial dysfunctions occur early, prior to symptoms occurrence. In this review, we modeled the effect of mutant SOD1 protein via the formation of a toxic complex with Bcl2 on mitochondrial bioenergetics. Furthermore, we discuss that the shutdown of ATP permeation through mitochondrial outer membrane could lead to both respiration inhibition and temporary mitochondrial hyperpolarization. Moreover, we reviewed mitochondrial calcium signaling, oxidative stress, fission and fusion, autophagy and apoptosis in mutant SOD1-linked ALS. Functional defects in mitochondria appear early before symptoms are manifested in ALS. Therefore, mitochondrial dysfunction is a promising therapeutic target in ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Mitocôndrias/metabolismo , Mutação/genética , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/patologia , Animais , Humanos , Modelos Biológicos , Superóxido Dismutase-1
9.
Proc Natl Acad Sci U S A ; 109(13): 5074-9, 2012 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-22416121

RESUMO

Recent studies suggest that Cu/Zn superoxide dismutase (SOD1) could be pathogenic in both familial and sporadic amyotrophic lateral sclerosis (ALS) through either inheritable or nonheritable modifications. The presence of a misfolded WT SOD1 in patients with sporadic ALS, along with the recently reported evidence that reducing SOD1 levels in astrocytes derived from sporadic patients inhibits astrocyte-mediated toxicity on motor neurons, suggest that WT SOD1 may acquire toxic properties similar to familial ALS-linked mutant SOD1, perhaps through posttranslational modifications. Using patients' lymphoblasts, we show here that indeed WT SOD1 is modified posttranslationally in sporadic ALS and is iper-oxidized (i.e., above baseline oxidation levels) in a subset of patients with bulbar onset. Derivatization analysis of oxidized carbonyl compounds performed on immunoprecipitated SOD1 identified an iper-oxidized SOD1 that recapitulates mutant SOD1-like properties and damages mitochondria by forming a toxic complex with mitochondrial Bcl-2. This study conclusively demonstrates the existence of an iper-oxidized SOD1 with toxic properties in patient-derived cells and identifies a common SOD1-dependent toxicity between mutant SOD1-linked familial ALS and a subset of sporadic ALS, providing an opportunity to develop biomarkers to subclassify ALS and devise SOD1-based therapies that go beyond the small group of patients with mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Tronco Encefálico/patologia , Proteínas Mutantes/toxicidade , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/toxicidade
10.
J Neurosci ; 33(28): 11588-98, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23843527

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause amyotrophic lateral sclerosis (ALS) in 20% of familial cases (fALS). Mitochondria are one of the targets of mutant SOD1 (mutSOD1) toxicity. We previously demonstrated that at the mitochondria, mutSOD1 forms a toxic complex with Bcl-2, which is then converted into a toxic protein via a structural rearrangement that exposes its toxic BH3 domain (Pedrini et al., 2010). Here we now show that formation of this toxic complex with Bcl-2 is the primary event in mutSOD1-induced mitochondrial dysfunction, inhibiting mitochondrial permeability to ADP and inducing mitochondrial hyperpolarization. In mutSOD1-G93A cells and mice, the newly exposed BH3 domain in Bcl-2 alters the normal interaction between Bcl-2 and VDAC1 thus reducing permeability of the outer mitochondrial membrane. In motor neuronal cells, the mutSOD1/Bcl-2 complex causes mitochondrial hyperpolarization leading to cell loss. Small SOD1-like therapeutic peptides that specifically block formation of the mutSOD1/Bcl-2 complex, recover both aspects of mitochondrial dysfunction: they prevent mitochondrial hyperpolarization and cell loss as well as restore ADP permeability in mitochondria of symptomatic mutSOD1-G93A mice.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Mitocôndrias/fisiologia , Mutação/fisiologia , Fragmentos de Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/toxicidade , Superóxido Dismutase/toxicidade , Esclerose Lateral Amiotrófica/genética , Animais , Sobrevivência Celular/genética , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Fragmentos de Peptídeos/genética , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Superóxido Dismutase-1
11.
J Neurosci ; 33(50): 19590-8, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336723

RESUMO

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease that leads invariably to fatal paralysis associated with motor neuron degeneration and muscular atrophy. One gene associated with ALS encodes the DNA/RNA-binding protein Fused in Sarcoma (FUS). There now exist two Drosophila models of ALS. In one, human FUS with ALS-causing mutations is expressed in fly motor neurons; in the other, the gene cabeza (caz), the fly homolog of FUS, is ablated. These FUS-ALS flies exhibit larval locomotor defects indicative of neuromuscular dysfunction and early death. The locus and site of initiation of this neuromuscular dysfunction remain unclear. We show here that in FUS-ALS flies, motor neuron cell bodies fire action potentials that propagate along the axon and voltage-dependent inward and outward currents in the cell bodies are indistinguishable in wild-type and FUS-ALS motor neurons. In marked contrast, the amplitude of synaptic currents evoked in the postsynaptic muscle cell is decreased by >80% in FUS-ALS larvae. Furthermore, the frequency but not unitary amplitude of spontaneous miniature synaptic currents is decreased dramatically in FUS-ALS flies, consistent with a change in quantal content but not quantal size. Although standard confocal microscopic analysis of the larval neuromuscular junction reveals no gross abnormalities, superresolution stimulated emission depletion (STED) microscopy demonstrates that the presynaptic active zone protein bruchpilot is aberrantly organized in FUS-ALS larvae. The results are consistent with the idea that defects in presynaptic terminal structure and function precede, and may contribute to, the later motor neuron degeneration that is characteristic of ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Neurônios Motores/patologia , Degeneração Neural/patologia , Proteína FUS de Ligação a RNA/metabolismo , Sinapses/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Drosophila , Neurônios Motores/metabolismo , Degeneração Neural/genética , Degeneração Neural/metabolismo , Proteína FUS de Ligação a RNA/genética , Sinapses/genética , Sinapses/metabolismo
12.
Elife ; 122024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38224498

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.


Assuntos
Esclerose Lateral Amiotrófica , Medula Cervical , Efrina-B2 , Doenças Neurodegenerativas , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/patologia , Astrócitos/metabolismo , Medula Cervical/metabolismo , Medula Cervical/patologia , Diafragma/inervação , Modelos Animais de Doenças , Efrina-B2/genética , Camundongos Transgênicos , Doenças Neurodegenerativas/patologia , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
13.
bioRxiv ; 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37215009

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1-G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.

14.
Neurobiol Dis ; 47(2): 194-200, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22521463

RESUMO

ATP-binding cassette (ABC) drug efflux transporters in the CNS are predominantly localized to the luminal surface of endothelial cells in capillaries to impede CNS accumulation of xenobiotics. Inflammatory mediators and cellular stressors regulate their activity. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease of upper and lower motor neurons characterized by extensive neuroinflammation. Here we tested the hypothesis that disease-driven changes in ABC transporter expression and function occur in ALS. Given the multitude of ABC transporters with their widespread substrate recognition, we began by examining expression levels of several ABC transporters. We found a selective increase in only two transporters: P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) both at mRNA and protein levels, in the SOD1-G93A mouse model of ALS, specifically in disease-affected CNS regions. Detailed analysis revealed a similar disease-driven increase in P-gp and BCRP levels in spinal cord microvessels, indicating that their altered expression occurs at the blood spinal cord barrier. Transport activity of P-gp and BCRP increased with disease progression in spinal cord and cerebral cortex capillaries. Finally, P-gp and BCRP protein expression also increased in spinal cords of ALS patients. Preclinical drug trials in the mouse model of ALS have failed to decisively slow or arrest disease progression; pharmacoresistance imparted by ABC transporters is one possible explanation for these failures. Our observations have large implications for ALS therapeutics in humans and suggest that the obstacle provided by these transporters to drug treatments must be overcome to develop effective ALS pharmacotherapies.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Transportadores de Cassetes de Ligação de ATP/biossíntese , Esclerose Lateral Amiotrófica/metabolismo , Barreira Hematoencefálica/metabolismo , Proteínas de Neoplasias/biossíntese , Medula Espinal/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Esclerose Lateral Amiotrófica/patologia , Animais , Barreira Hematoencefálica/patologia , Resistência a Medicamentos , Humanos , Camundongos , Camundongos Transgênicos , Transporte Proteico/fisiologia , Medula Espinal/patologia
15.
Hum Mol Genet ; 19(15): 2974-86, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20460269

RESUMO

In mutant superoxide dismutase (SOD1)-linked amyotrophic lateral sclerosis (ALS), accumulation of misfolded mutant SOD1 in spinal cord mitochondria is thought to cause mitochondrial dysfunction. Whether mutant SOD1 is toxic per se or whether it damages the mitochondria through interactions with other mitochondrial proteins is not known. We previously identified Bcl-2 as an interacting partner of mutant SOD1 specifically in spinal cord, but not in liver, mitochondria of SOD1 mice and patients. We now show that mutant SOD1 toxicity relies on this interaction. Mutant SOD1 induces mitochondrial morphological changes and compromises mitochondrial membrane integrity leading to release of Cytochrome C only in the presence of Bcl-2. In cells, mouse and human spinal cord with SOD1 mutations, the binding to mutant SOD1 triggers a conformational change in Bcl-2 that results in the uncovering of its toxic BH3 domain and conversion of Bcl-2 into a toxic protein. Bcl-2 carrying a mutagenized, non-toxic BH3 domain fails to support mutant SOD1 mitochondrial toxicity. The identification of Bcl-2 as a specific target and active partner in mutant SOD1 mitochondrial toxicity suggests new therapeutic strategies to inhibit the formation of the toxic mutant SOD1/Bcl-2 complex and to prevent mitochondrial damage in ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Esclerose Lateral Amiotrófica/genética , Mitocôndrias/patologia , Proteínas Mutantes/genética , Proteínas Proto-Oncogênicas c-bcl-2/química , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Linhagem Celular , Sobrevivência Celular , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Mitocôndrias/ultraestrutura , Mutação/genética , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-bcl-2/toxicidade , Superóxido Dismutase/toxicidade
16.
Sci Rep ; 12(1): 5644, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379876

RESUMO

Translation of the hexanucleotide G4C2 expansion associated with C9orf72 amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) produces five different dipeptide repeat protein (DPR) species that can confer toxicity. There is yet much to learn about the contribution of a single DPR to disease pathogenesis. We show here that a short repeat length is sufficient for the DPR poly-GR to confer neurotoxicity in vitro, a phenomenon previously unobserved. This toxicity is also reported in vivo in our novel knock-in mouse model characterized by widespread central nervous system (CNS) expression of the short-length poly-GR. We observe sex-specific chronic ALS/FTD-like phenotypes in these mice, including mild motor neuron loss, but no TDP-43 mis-localization, as well as motor and cognitive impairments. We suggest that this model can serve as the foundation for phenotypic exacerbation through second-hit forms of stress.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Esclerose Lateral Amiotrófica/metabolismo , Animais , Arginina/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipeptídeos/metabolismo , Feminino , Demência Frontotemporal/patologia , Glicina/genética , Masculino , Camundongos , Fenótipo
17.
J Biol Chem ; 285(35): 27411-27417, 2010 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-20551319

RESUMO

Potassium fluxes integrate mitochondria into cellular activities, controlling their volume homeostasis and structural integrity in many pathophysiological mechanisms. The outer mitochondrial membrane (OMM) is thought to play a passive role in this process because K(+) is believed to equilibrate freely between the cytosol and mitochondrial intermembrane space. By patch clamping mitochondria isolated from the central nervous systems of adult mitoCFP transgenic mice, we discovered the existence of I(OMMKi), a novel voltage-dependent inwardly rectifying K(+) conductance located in the OMM. I(OMMKi) is regulated by osmolarity, potentiated by cAMP, and activated at physiological negative potentials, allowing K(+) to enter the mitochondrial intermembrane space in a controlled regulated fashion. The identification of I(OMMKi) in the OMM supports the notion that a membrane potential could exist across this membrane in vivo and suggests that the OMM possesses regulated pathways for K(+) uptake.


Assuntos
Potencial da Membrana Mitocondrial/fisiologia , Membranas Mitocondriais/metabolismo , Neurônios/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Canais de Potássio Corretores do Fluxo de Internalização/genética
18.
Glia ; 59(11): 1719-31, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21769946

RESUMO

Dysregulation of glutamate handling ensuing downregulation of expression and activity levels of the astroglial glutamate transporter EAAT2 is implicated in excitotoxic degeneration of motor neurons in amyotrophic lateral sclerosis (ALS). We previously reported that EAAT2 (a.k.a. GLT-1) is cleaved by caspase-3 at its cytosolic carboxy-terminus domain. This cleavage results in impaired glutamate transport activity and generates a proteolytic fragment (CTE) that we found to be post-translationally conjugated by SUMO1. We show here that this sumoylated CTE fragment accumulates in the nucleus of spinal cord astrocytes of the SOD1-G93A mouse model of ALS at symptomatic stages of disease. Astrocytic expression of CTE, artificially tagged with SUMO1 (CTE-SUMO1) to mimic the native sumoylated fragment, recapitulates the nuclear accumulation pattern of the endogenous EAAT2-derived proteolytic fragment. Moreover, in a co-culture binary system, expression of CTE-SUMO1 in spinal cord astrocytes initiates extrinsic toxicity by inducing caspase-3 activation in motor neuron-derived NSC-34 cells or axonal growth impairment in primary motor neurons. Interestingly, prolonged nuclear accumulation of CTE-SUMO1 is intrinsically toxic to spinal cord astrocytes, although this gliotoxic effect of CTE-SUMO1 occurs later than the indirect, noncell autonomous toxic effect on motor neurons. As more evidence on the implication of SUMO substrates in neurodegenerative diseases emerges, our observations strongly suggest that the nuclear accumulation in spinal cord astrocytes of a sumoylated proteolytic fragment of the astroglial glutamate transporter EAAT2 could participate to the pathogenesis of ALS and suggest a novel, unconventional role for EAAT2 in motor neuron degeneration.


Assuntos
Transportador 2 de Aminoácido Excitatório/toxicidade , Neurônios Motores/efeitos dos fármacos , Proteína SUMO-1/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Astrócitos/metabolismo , Axônios/fisiologia , Axônios/ultraestrutura , Caspase 3/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Células Cultivadas , Técnicas de Cocultura , Transportador 2 de Aminoácido Excitatório/química , Imunofluorescência , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Análise em Microsséries , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Superóxido Dismutase/genética , Superóxido Dismutase-1
19.
J Vis Exp ; (173)2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34338673

RESUMO

Before neuronal degeneration, the cause of motor and cognitive deficits in patients with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTLD) is dysfunction of communication between neurons and motor neurons and muscle. The underlying process of synaptic transmission involves membrane depolarization-dependent synaptic vesicle fusion and the release of neurotransmitters into the synapse. This process occurs through localized calcium influx into the presynaptic terminals where synaptic vesicles reside. Here, the protocol describes fluorescence-based live-imaging methodologies that reliably report depolarization-mediated synaptic vesicle exocytosis and presynaptic terminal calcium influx dynamics in cultured neurons. Using a styryl dye that is incorporated into synaptic vesicle membranes, the synaptic vesicle release is elucidated. On the other hand, to study calcium entry, Gcamp6m is used, a genetically encoded fluorescent reporter. We employ high potassium chloride-mediated depolarization to mimic neuronal activity. To quantify synaptic vesicle exocytosis unambiguously, we measure the loss of normalized styryl dye fluorescence as a function of time. Under similar stimulation conditions, in the case of calcium influx, Gcamp6m fluorescence increases. Normalization and quantification of this fluorescence change are performed in a similar manner to the styryl dye protocol. These methods can be multiplexed with transfection-based overexpression of fluorescently tagged mutant proteins. These protocols have been extensively used to study synaptic dysfunction in models of FUS-ALS and C9ORF72-ALS, utilizing primary rodent cortical and motor neurons. These protocols easily allow for rapid screening of compounds that may improve neuronal communication. As such, these methods are valuable not only for the study of ALS but for all areas of neurodegenerative and developmental neuroscience research.


Assuntos
Esclerose Lateral Amiotrófica , Exocitose , Humanos , Neurônios Motores , Terminações Pré-Sinápticas , Transmissão Sináptica , Vesículas Sinápticas
20.
EMBO Mol Med ; 12(5): e10722, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32347002

RESUMO

The most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) is an intronic hexanucleotide repeat expansion in the C9orf72 gene. In disease, RNA transcripts containing this expanded region undergo repeat-associated non-AUG translation to produce dipeptide repeat proteins (DPRs), which are detected in brain and spinal cord of patients and are neurotoxic both in vitro and in vivo paradigms. We reveal here a novel pathogenic mechanism for the most abundantly detected DPR in ALS/FTD autopsy tissues, poly-glycine-alanine (GA). Previously, we showed motor dysfunction in a GA mouse model without loss of motor neurons. Here, we demonstrate that mobile GA aggregates are present within neurites, evoke a reduction in synaptic vesicle-associated protein 2 (SV2), and alter Ca2+ influx and synaptic vesicle release. These phenotypes could be corrected by restoring SV2 levels. In GA mice, loss of SV2 was observed without reduction of motor neuron number. Notably, reduction in SV2 was seen in cortical and motor neurons derived from patient induced pluripotent stem cell lines, suggesting synaptic alterations also occur in patients.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Alanina , Esclerose Lateral Amiotrófica/genética , Animais , Proteína C9orf72/genética , Dipeptídeos , Demência Frontotemporal/genética , Glicina , Humanos , Camundongos , Neurônios Motores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA