Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Biol Chem ; 300(3): 105716, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311174

RESUMO

FUS and TDP-43 are two self-adhesive aggregation-prone mRNA-binding proteins whose pathological mutations have been linked to neurodegeneration. While TDP-43 and FUS form reversible mRNA-rich compartments in the nucleus, pathological mutations promote their respective cytoplasmic aggregation in neurons with no apparent link between the two proteins except their intertwined function in mRNA processing. By combining analyses in cellular context and at high resolution in vitro, we unraveled that TDP-43 is specifically recruited in FUS assemblies to form TDP-43-rich subcompartments but without reciprocity. The presence of mRNA provides an additional scaffold to promote the mixing between TDP-43 and FUS. Accordingly, we also found that the pathological truncated form of TDP-43, TDP-25, which has an impaired RNA-binding ability, no longer mixes with FUS. Together, these results suggest that the binding of FUS along nascent mRNAs enables TDP-43, which is highly aggregation-prone, to mix with FUS phase to form mRNA-rich subcompartments. A functional link between FUS and TDP-43 may explain their common implication in amyotrophic lateral sclerosis.


Assuntos
Esclerose Lateral Amiotrófica , Proteínas de Ligação a DNA , Proteína FUS de Ligação a RNA , RNA , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Fragmentos de Peptídeos/metabolismo , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína FUS de Ligação a RNA/genética , Proteína FUS de Ligação a RNA/metabolismo
2.
Nucleic Acids Res ; 49(17): 10061-10081, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34469566

RESUMO

In the absence of the scanning ribosomes that unwind mRNA coding sequences and 5'UTRs, mRNAs are likely to form secondary structures and intermolecular bridges. Intermolecular base pairing of non polysomal mRNAs is involved in stress granule (SG) assembly when the pool of mRNAs freed from ribosomes increases during cellular stress. Here, we unravel the structural mechanisms by which a major partner of dormant mRNAs, YB-1 (YBX1), unwinds mRNA secondary structures without ATP consumption by using its conserved cold-shock domain to destabilize RNA stem/loops and its unstructured C-terminal domain to secure RNA unwinding. At endogenous levels, YB-1 facilitates SG disassembly during arsenite stress recovery. In addition, overexpression of wild-type YB-1 and to a lesser extent unwinding-defective mutants inhibit SG assembly in HeLa cells. Through its mRNA-unwinding activity, YB-1 may thus inhibit SG assembly in cancer cells and package dormant mRNA in an unfolded state, thus preparing mRNAs for translation initiation.


Assuntos
Sequências Repetidas Invertidas/genética , Iniciação Traducional da Cadeia Peptídica/genética , RNA Mensageiro/genética , Grânulos de Estresse/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Trifosfato de Adenosina/metabolismo , Arsenitos/toxicidade , Pareamento de Bases/genética , Linhagem Celular Tumoral , Células HeLa , Humanos , Ribossomos/metabolismo
3.
Biochemistry (Mosc) ; 87(Suppl 1): S20-S93, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35501984

RESUMO

From their synthesis in the nucleus to their degradation in the cytoplasm, all mRNAs have the same objective, which is to translate the DNA-stored genetic information into functional proteins at the proper time and location. To this end, many proteins are generally associated with mRNAs as soon as transcription takes place in the nucleus to organize spatiotemporal regulation of the gene expression in cells. Here we reviewed how YB-1 (YBX1 gene), one of the major mRNA-binding proteins in the cytoplasm, packaged mRNAs into either compact or extended linear nucleoprotein mRNPs. Interestingly the structural plasticity of mRNPs coordinated by YB-1 could provide means for the contextual regulation of mRNA translation. Posttranslational modification of YB-1, notably in the long unstructured YB-1 C-terminal domain (CTD), and/or the protein partners of YB-1 may play a key role in activation/inactivation of mRNPs in the cells notably in response to cellular stress.


Assuntos
Biossíntese de Proteínas , Grânulos de Estresse , Citoplasma/metabolismo , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo
4.
Int J Mol Sci ; 23(21)2022 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-36361989

RESUMO

Fused in sarcoma (FUS) is involved in the regulation of RNA and DNA metabolism. FUS participates in the formation of biomolecular condensates driven by phase transition. FUS is prone to self-aggregation and tends to undergo phase transition both with or without nucleic acid polymers. Using dynamic light scattering and fluorescence microscopy, we examined the formation of FUS high-order structures or FUS-rich microphases induced by the presence of RNA, poly(ADP-ribose), ssDNA, or dsDNA and evaluated effects of some nucleic-acid-binding proteins on the phase behavior of FUS-nucleic acid systems. Formation and stability of FUS-rich microphases only partially correlated with FUS's affinity for a nucleic acid polymer. Some proteins-which directly interact with PAR, RNA, ssDNA, and dsDNA and are possible components of FUS-enriched cellular condensates-disrupted the nucleic-acid-induced assembly of FUS-rich microphases. We found that XRCC1, a DNA repair factor, underwent a microphase separation and formed own microdroplets and coassemblies with FUS in the presence of poly(ADP-ribose). These results probably indicated an important role of nucleic-acid-binding proteins in the regulation of FUS-dependent formation of condensates and imply the possibility of the formation of XRCC1-dependent phase-separated condensates in the cell.


Assuntos
Ácidos Nucleicos , Proteína FUS de Ligação a RNA , Proteína FUS de Ligação a RNA/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Polímeros/metabolismo , Reparo do DNA , RNA
5.
EMBO Rep ; 20(8): e47604, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31271494

RESUMO

The essential splicing factor U2AF65 is known to help anchoring U2 snRNP at the branch site. Its C-terminal UHM domain interacts with ULM motifs of SF3b155, an U2 snRNP protein. Here, we report a cooperative binding of U2AF65 and the related protein CAPERα to the multi-ULM domain of SF3b155. In addition, we show that the RS domain of U2AF65 drives a liquid-liquid phase separation that is amplified by intronic RNA with repeated pyrimidine tracts. In cells, knockdown of either U2AF65 or CAPERα improves the inclusion of cassette exons that are preceded by such repeated pyrimidine-rich motifs. These results support a model in which liquid-like assemblies of U2AF65 and CAPERα on repetitive pyrimidine-rich RNA sequences are driven by their RS domains, and facilitate the recruitment of the multi-ULM domain of SF3b155. We anticipate that posttranslational modifications and proteins recruited in dynamical U2AF65 and CAPERα condensates may further contribute to the complex mechanisms leading to specific splice site choice that occurs in cells.


Assuntos
Processamento Alternativo , Fosfoproteínas/genética , Fatores de Processamento de RNA/genética , Proteínas de Ligação a RNA/genética , Spliceossomos/genética , Fator de Processamento U2AF/genética , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , DNA Complementar/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Células HeLa , Humanos , Motivos de Nucleotídeos , Fosfoproteínas/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ribonucleoproteína Nuclear Pequena U2/genética , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo , Fator de Processamento U2AF/antagonistas & inibidores , Fator de Processamento U2AF/metabolismo
6.
Nucleic Acids Res ; 47(6): 3127-3141, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30605522

RESUMO

The structural rearrangements accompanying mRNA during translation in mammalian cells remain poorly understood. Here, we discovered that YB-1 (YBX1), a major partner of mRNAs in the cytoplasm, forms a linear nucleoprotein filament with mRNA, when part of the YB-1 unstructured C-terminus has been truncated. YB-1 possesses a cold-shock domain (CSD), a remnant of bacterial cold shock proteins that have the ability to stimulate translation under the low temperatures through an RNA chaperone activity. The structure of the nucleoprotein filament indicates that the CSD of YB-1 preserved its chaperone activity also in eukaryotes and shows that mRNA is channeled between consecutive CSDs. The energy benefit needed for the formation of stable nucleoprotein filament relies on an electrostatic zipper mediated by positively charged amino acid residues in the YB-1 C-terminus. Thus, YB-1 displays a structural plasticity to unfold structured mRNAs into extended linear filaments. We anticipate that our findings will shed the light on the scanning of mRNAs by ribosomes during the initiation and elongation steps of mRNA translation.


Assuntos
Nucleoproteínas/química , Proteínas de Ligação a RNA/ultraestrutura , Proteína 1 de Ligação a Y-Box/ultraestrutura , Sequência de Aminoácidos/genética , Citoesqueleto/genética , Citoesqueleto/ultraestrutura , Escherichia coli/genética , Humanos , Nucleoproteínas/genética , Nucleoproteínas/ultraestrutura , Ligação Proteica/genética , Biossíntese de Proteínas/genética , Dobramento de Proteína , RNA Mensageiro/química , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribossomos/química , Ribossomos/genética , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/genética
7.
J Cell Sci ; 131(11)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29728455

RESUMO

Liquid-liquid phase separation enables compartmentalization of biomolecules in cells, notably RNA and associated proteins in the nucleus. Besides having critical functions in RNA processing, there is a major interest in deciphering the molecular mechanisms of compartmentalization orchestrated by RNA-binding proteins such as TDP-43 (also known as TARDBP) and FUS because of their link to neuron diseases. However, tools for probing compartmentalization in cells are lacking. Here, we developed a method to analyze the mixing and demixing of two different phases in a cellular context. The principle is the following: RNA-binding proteins are confined on microtubules and quantitative parameters defining their spatial segregation are measured along the microtubule network. Through this approach, we found that four mRNA-binding proteins, HuR (also known as ELAVL1), G3BP1, TDP-43 and FUS form mRNA-rich liquid-like compartments on microtubules. TDP-43 is partly miscible with FUS but immiscible with either HuR or G3BP1. We also demonstrate that mRNA is essential to capture the mixing and demixing behavior of mRNA-binding proteins in cells. Taken together, we show that microtubules can be used as platforms to understand the mechanisms underlying liquid-liquid phase separation and their deregulation in human diseases.


Assuntos
Células/metabolismo , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Células/química , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Células HeLa , Humanos , Microtúbulos/química , Ligação Proteica , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/química
8.
Int J Mol Sci ; 21(19)2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32987654

RESUMO

The fused in sarcoma (FUS) protein combines prion-like properties with a multifunctional DNA/RNA-binding domain and has functions spanning the regulation of RNA metabolism, including transcription, pre-mRNA splicing, mRNA transport and translation. In addition to its roles in RNA metabolism, FUS is implicated in the maintenance of DNA integrity. In this review, we examine the participation of FUS in major DNA repair pathways, focusing on DNA repair associated with poly(ADP-ribosyl)ation events and on how the interaction of FUS with poly(ADP-ribose) may orchestrate transient compartmentalisation of DNA strand breaks. Unravelling how prion-like RNA-binding proteins control DNA repair pathways will deepen our understanding of the pathogenesis of some neurological diseases and cancer as well as provide the basis for the development of relevant innovative therapeutic technologies. This knowledge may also extend the range of applications of poly(ADP-ribose) polymerase inhibitors to the treatment of neurodegenerative diseases related to RNA-binding proteins in the cell, e.g., amyotrophic lateral sclerosis and frontotemporal lobar degeneration.


Assuntos
Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteína FUS de Ligação a RNA/fisiologia , Animais , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
9.
Curr Neurol Neurosci Rep ; 18(12): 107, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30406848

RESUMO

ᅟ: A hallmark of neurodegenerative diseases is the accumulation of cytoplasmic protein aggregates in neurons of affected subjects. Among recently identified elements of these aggregates are RNA-binding proteins (RBPs) involved in RNA metabolism and alternative splicing and have in common the presence of low complexity domains (LCD) that are prone to self-assemble and form aggregates. The mechanism of cytoplasmic protein aggregation remains elusive. Stress granules (SGs) that are micrometric RNA-protein assemblies located in the cytoplasm of cells exposed to environmental stress are suspected to play the role of seeds. The review sheds light on the recent experimental results that suggest a link between SGs and cytoplasmic protein aggregates but also propose other routes for the formation of these aggregates. PURPOSE OF REVIEW: To analyze the potential relationship between cytoplasmic protein aggregates in neurons of affected subjects and stress granules. RECENT FINDINGS: Liquid phase separation explains how protein and RNA could assemble in membraneless compartments, notably SGs. These results highlight the importance of RBPs with LCD in the SG assembly. Maturation of SGs and in particular the dense core is a potential source of insoluble protein aggregates. Several lines of evidence linked stress granule dynamics to pathogenic protein aggregates. (i) Proteins that accumulate in cytoplasmic aggregates are also SG components. (ii) Neurons are specifically exposed to stress events due to their high metabolism and long lifespan. (iii) Diseases linked protein mutations affect the SG dynamics. (iv) SG dense core could be a breeding ground for protein aggregates. However, we should also keep in mind that SGs are not the only RNA-protein assembly in the cytoplasm; the RNA transport granules could also play a role in the formation of insoluble protein aggregates.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Doenças Neurodegenerativas/metabolismo , Grânulos Citoplasmáticos/patologia , Humanos , Doenças Neurodegenerativas/patologia , Agregados Proteicos , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico
10.
Bioessays ; 38(6): 498-507, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27125471

RESUMO

We propose that interaction rules derived from polyamine exchange in connected cells may explain the spatio-temporal organization of gap junctions observed during tissue regeneration and tumorigenesis. We also hypothesize that polyamine exchange can be considered as signal that allows cells to sense the proliferation status of their neighbors. Polyamines (putrescine, spermidine, and spermine) are indeed small aliphatic polycations that serve as fuels to sustain elevated proliferation rates of the order observed in cancer cells. Based on recent reports, we consider here that polyamines can be exchanged through gap junction channels between mammalian cells. Such intercellular exchange of polyamines has critical consequences on the local control of growth. In line with this hypothesis, the complex protein network that keeps polyamine levels finely tuned in mammalian cells can translate polyamine efflux or influx into integrated signals controlling transcription, translation, and cell communications.


Assuntos
Proliferação de Células/fisiologia , Junções Comunicantes/metabolismo , Poliaminas , Transdução de Sinais , Animais , Humanos , Neoplasias/fisiopatologia , Regeneração , Cicatrização
11.
Nucleic Acids Res ; 44(6): e60, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-26673720

RESUMO

PARP1 and PARP2 are implicated in the synthesis of poly(ADP-ribose) (PAR) after detection of DNA damage. The specificity of PARP1 and PARP2 interaction with long DNA fragments containing single- and/or double-strand breaks (SSBs and DSBs) have been studied using atomic force microscopy (AFM) imaging in combination with biochemical approaches. Our data show that PARP1 localizes mainly on DNA breaks and exhibits a slight preference for nicks over DSBs, although the protein has a moderately high affinity for undamaged DNA. In contrast to PARP1, PARP2 is mainly detected at a single DNA nick site, exhibiting a low level of binding to undamaged DNA and DSBs. The enhancement of binding affinity of PARP2 for DNA containing a single nick was also observed using fluorescence titration. AFM studies reveal that activation of both PARPs leads to the synthesis of highly branched PAR whose size depends strongly on the presence of SSBs and DSBs for PARP1 and of SSBs for PARP2. The initial affinity between the PARP1, PARP2 and the DNA damaged site appears to influence both the size of the PAR synthesized and the time of residence of PARylated PARP1 and PARP2 on DNA damages.


Assuntos
Quebras de DNA de Cadeia Dupla , Quebras de DNA de Cadeia Simples , Reparo do DNA , DNA/química , Poli Adenosina Difosfato Ribose/biossíntese , Poli(ADP-Ribose) Polimerases/química , Clonagem Molecular , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Magnésio/química , Microscopia de Força Atômica , Imagem Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Poli Adenosina Difosfato Ribose/genética , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Putrescina/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espermidina/química
12.
Cell Mol Life Sci ; 73(19): 3745-60, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27076215

RESUMO

Opposing views have been proposed regarding the role of tau, the principal microtubule-associated protein in axons. On the one hand, tau forms cross-bridges at the interface between microtubules and induces microtubule bundling in neurons. On the other hand, tau is also considered a polymer brush which efficiently separates microtubules. In mature axons, microtubules are indeed arranged in parallel arrays and are well separated from each other. To reconcile these views, we developed a mechanistic model based on in vitro and cellular approaches combined to analytical and numerical analyses. The results indicate that tau forms long-range cross-bridges between microtubules under macromolecular crowding conditions. Tau cross-bridges prevent the redistribution of tau away from the interface between microtubules, which would have occurred in the polymer brush model. Consequently, the short-range attractive force between microtubules induced by macromolecular crowding is avoided and thus microtubules remain well separated from each other. Interestingly, in this unified model, tau diffusion on microtubules enables to keep microtubules evenly distributed in axonal sections at low tau levels.


Assuntos
Axônios/metabolismo , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Animais , Córtex Cerebral/metabolismo , Simulação por Computador , Difusão , Fluorescência , Substâncias Macromoleculares , Camundongos , Domínios Proteicos , Tubulina (Proteína)/metabolismo , Proteínas tau/química
13.
Nucleic Acids Res ; 43(19): 9457-73, 2015 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-26271991

RESUMO

Translation is tightly regulated in cells for keeping adequate protein levels, this task being notably accomplished by dedicated mRNA-binding proteins recognizing a specific set of mRNAs to repress or facilitate their translation. To select specific mRNAs, mRNA-binding proteins can strongly bind to specific mRNA sequences/structures. However, many mRNA-binding proteins rather display a weak specificity to short and redundant sequences. Here we examined an alternative mechanism by which mRNA-binding proteins could inhibit the translation of specific mRNAs, using YB-1, a major translation regulator, as a case study. Based on a cooperative binding, YB-1 forms stable homo-multimers on some mRNAs while avoiding other mRNAs. Via such inhomogeneous distribution, YB-1 can selectively inhibit translation of mRNAs on which it has formed stable multimers. This novel mechanistic view on mRNA selection may be shared by other proteins considering the elevated occurrence of multimerization among mRNA-binding proteins. Interestingly, we also demonstrate how, by using the same mechanism, YB-1 can form multimers on specific DNA structures, which could provide novel insights into YB-1 nuclear functions in DNA repair and multi-drug resistance.


Assuntos
DNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Células Cultivadas , DNA/ultraestrutura , DNA Topoisomerases Tipo II/metabolismo , DNA Super-Helicoidal/metabolismo , Microscopia de Força Atômica , Ligação Proteica , Biossíntese de Proteínas , Multimerização Proteica , Estrutura Terciária de Proteína , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/ultraestrutura , Ratos , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/ultraestrutura
14.
Nucleic Acids Res ; 42(13): 8678-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25013173

RESUMO

The sequence of events leading to stress granule assembly in stressed cells remains elusive. We show here, using isotope labeling and ion microprobe, that proportionally more RNA than proteins are present in stress granules than in surrounding cytoplasm. We further demonstrate that the delivery of single strand polynucleotides, mRNA and ssDNA, to the cytoplasm can trigger stress granule assembly. On the other hand, increasing the cytoplasmic level of mRNA-binding proteins like YB-1 can directly prevent the aggregation of mRNA by forming isolated mRNPs, as evidenced by atomic force microscopy. Interestingly, we also discovered that enucleated cells do form stress granules, demonstrating that the translocation to the cytoplasm of nuclear prion-like RNA-binding proteins like TIA-1 is dispensable for stress granule assembly. The results lead to an alternative view on stress granule formation based on the following sequence of events: after the massive dissociation of polysomes during stress, mRNA-stabilizing proteins like YB-1 are outnumbered by the burst of nonpolysomal mRNA. mRNA freed of ribosomes thus becomes accessible to mRNA-binding aggregation-prone proteins or misfolded proteins, which induces stress granule formation. Within the frame of this model, the shuttling of nuclear mRNA-stabilizing proteins to the cytoplasm could dissociate stress granules or prevent their assembly.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico , Animais , Células Cultivadas , Citoplasma/química , Grânulos Citoplasmáticos/química , DNA de Cadeia Simples/metabolismo , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Inibidores de Proteassoma/farmacologia , Multimerização Proteica , Transporte Proteico , Proteínas/análise , Puromicina/farmacologia , RNA/análise , RNA Mensageiro/fisiologia , Ratos
15.
J Biol Chem ; 287(4): 2446-58, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22147700

RESUMO

The massive uptake of compatible osmolytes such as betaine, taurine, and myo-inositol is a protective response shared by all eukaryotes exposed to hypertonic stress. Their accumulation results mostly from the expression of specific transporters triggered by the transcriptional factor NFAT5/TonEBP. This allows the recovery of the cell volume without increasing intracellular ionic strength. In this study we consider the assembly and dissociation of mRNA stress granules (SGs) in hypertonic-stressed cells and the role of compatible osmolytes. In agreement with in vitro results obtained on isolated mRNAs, both macromolecular crowding and a high ionic strength favor the assembly of SGs in normal rat kidney epithelial cells. However, after hours of constant hypertonicity, the slow accumulation in the cytoplasm of compatible osmolytes via specific transporters both reduces macromolecular crowding and ionic strength, thus leading to the progressive dissociation of SGs. In line with this, when cells are exposed to hypertonicity to accumulate a large amount of compatible osmolytes, the formation of SGs is severely impaired, and cells increase their chances of survival to another hypertonic episode. Altogether, these results indicate that the impact of compatible osmolytes on the mRNA-associated machineries and especially that associated with SGs may play an important role in cell resistance and adaption to hyperosmolarity in many tissues like kidney and liver.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Rim/metabolismo , Fígado/metabolismo , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Grânulos Citoplasmáticos/genética , Pressão Osmótica/fisiologia , RNA Mensageiro/genética , Ratos , Ovinos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Small ; 9(21): 3630-8, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-23674511

RESUMO

Improving the detection of DNA hybridization is a critical issue for several challenging applications encountered in microarray and biosensor domains. Herein, it is demonstrated that hybridization between complementary single-stranded DNA (ssDNA) molecules loosely adsorbed on a mica surface can be achieved thanks to fine-tuning of the composition of the hybridization buffer. Single-molecule DNA hybridization occurs in only a few minutes upon encounters of freely diffusing complementary strands on the mica surface. Interestingly, the specific hybridization between complementary ssDNA is not altered in the presence of large amounts of nonrelated DNA. The detection of single-molecule DNA hybridization events is performed by measuring the contour length of DNA in atomic force microscopy images. Besides the advantage provided by facilitated diffusion, which promotes hybridization between probes and targets on mica, the present approach also allows the detection of single isolated DNA duplexes and thus requires a very low amount of both probe and target molecules.


Assuntos
DNA de Cadeia Simples/química , Microscopia de Força Atômica/métodos , Hibridização de Ácido Nucleico , Silicatos de Alumínio/química , Cátions , Temperatura Alta , Desnaturação de Ácido Nucleico
17.
Commun Biol ; 6(1): 110, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707647

RESUMO

Post-transcriptional regulation of p53, by the microRNA miR-125b and the RNA-binding protein HuR, controls p53 expression under genotoxic stress. p53 mRNA translation is repressed by miR-125b, tightly regulating its basal level of expression. The repression is relieved upon DNA damage by a decrease in miR-125b level, contributing to pulsatile expression of p53. The pulse of p53, as also of HuR, in response to UV irradiation coincides with a time-dependent biphasic change in miR-125b level. We show that the cause for the decrease in miR-125b level immediately post DNA-damage is enhanced exosomal export mediated by HuR. The subsequent increase in miR-125b level is due to p53-mediated transcriptional upregulation and enhanced processing, demonstrating miR-125b as a transcriptional and processing target of p53. p53 activates the transcription of primary miR-125b RNA from a cryptic promoter in response to UV irradiation. Together, these regulatory processes constitute reciprocal feedback loops that determine the biphasic change in miR-125b level, ultimately contributing to the fine-tuned temporal regulation of p53 expression in response to genotoxic stress.


Assuntos
MicroRNAs , Dano ao DNA , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Ativação Transcricional , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Semelhante a ELAV 1/metabolismo
18.
Front Mol Biosci ; 10: 1298441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033386

RESUMO

In recent years, RNA has gained traction both as a therapeutic molecule and as a therapeutic target in several human pathologies. In this review, we consider the approach of targeting RNA using small molecules for both research and therapeutic purposes. Given the primary challenge presented by the low structural diversity of RNA, we discuss the potential for targeting RNA: protein interactions to enhance the structural and sequence specificity of drug candidates. We review available tools and inherent challenges in this approach, ranging from adapted bioinformatics tools to in vitro and cellular high-throughput screening and functional analysis. We further consider two critical steps in targeting RNA/protein interactions: first, the integration of in silico and structural analyses to improve the efficacy of molecules by identifying scaffolds with high affinity, and second, increasing the likelihood of identifying on-target compounds in cells through a combination of high-throughput approaches and functional assays. We anticipate that the development of a new class of molecules targeting RNA: protein interactions to prevent physio-pathological mechanisms could significantly expand the arsenal of effective therapeutic compounds.

19.
Sci Rep ; 13(1): 7772, 2023 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-37179431

RESUMO

FUS is an RNA-binding protein involved in familiar forms of ALS and FTLD that also assembles into fibrillar cytoplasmic aggregates in some neurodegenerative diseases without genetic causes. The self-adhesive prion-like domain in FUS generates reversible condensates via the liquid-liquid phase separation process (LLPS) whose maturation can lead to the formation of insoluble fibrillar aggregates in vitro, consistent with the appearance of cytoplasmic inclusions in ageing neurons. Using a single-molecule imaging approach, we reveal that FUS can assemble into nanofibrils at concentrations in the nanomolar range. These results suggest that the formation of fibrillar aggregates of FUS could occur in the cytoplasm at low concentrations of FUS, below the critical ones required to trigger the liquid-like condensate formation. Such nanofibrils may serve as seeds for the formation of pathological inclusions. Interestingly, the fibrillation of FUS at low concentrations is inhibited by its binding to mRNA or after the phosphorylation of its prion-like domain, in agreement with previous models.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Príons , Humanos , RNA Mensageiro/metabolismo , Príons/metabolismo , Doenças Neurodegenerativas/metabolismo , Citoplasma/metabolismo , Fosforilação , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Lateral Amiotrófica/metabolismo
20.
Elife ; 122023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36651723

RESUMO

RNA-protein interactions (RPIs) are promising targets for developing new molecules of therapeutic interest. Nevertheless, challenges arise from the lack of methods and feedback between computational and experimental techniques during the drug discovery process. Here, we tackle these challenges by developing a drug screening approach that integrates chemical, structural and cellular data from both advanced computational techniques and a method to score RPIs in cells for the development of small RPI inhibitors; and we demonstrate its robustness by targeting Y-box binding protein 1 (YB-1), a messenger RNA-binding protein involved in cancer progression and resistance to chemotherapy. This approach led to the identification of 22 hits validated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) spectroscopy of which 11 were found to significantly interfere with the binding of messenger RNA (mRNA) to YB-1 in cells. One of our leads is an FDA-approved poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor. This work shows the potential of our integrative approach and paves the way for the rational development of RPI inhibitors.


Assuntos
Neoplasias , RNA , Humanos , Simulação de Dinâmica Molecular , Descoberta de Drogas , RNA Mensageiro/genética , Proteína 1 de Ligação a Y-Box/genética , Proteína 1 de Ligação a Y-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA