Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(23): 6018-6033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35037792

RESUMO

The Abelmoschus esculentus plant, better known as okra, is an interesting crop from a nutritional standpoint. The okra plant is native to the African region but can now be found throughout tropical and subtropical areas of the world. This plant, known for its healing abilities, has been used as a traditional medicine to treat several diseases and external ailments, such as wounds or boils. This article reviews the potential health benefits from okra consumption, as well as the bioactive compounds that are suggested to be responsible. Furthermore, the okra plant and its derivatives have been evaluated in the formulation and manufacture of new functional food products. The latest advances in this direction, which includes characterizing the technical properties of functional foods fortified with okra are also presented in this review. A series of bioactive compounds such as flavonoids and catechins have been found in the okra plant, which were associated with numerous biological properties observed in research studies that reported potential anti-diabetic, anti-cancer, anti-hypertensive, and antimicrobial effects, among others, as a result of their consumption. These potential health benefits contribute to the development of new and useful functional foods, with okra (or its derivatives) being used as the highlighted ingredient.


Assuntos
Abelmoschus , Diabetes Mellitus , Humanos , Alimento Funcional , Extratos Vegetais/farmacologia , Flavonoides
2.
Crit Rev Food Sci Nutr ; 63(25): 7795-7810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35285755

RESUMO

Food processing, especially the juice industry, is an important sector that generate million tons of residues every. Due to the increasing concern about waste generation and the interest in its valorization, the reutilization of by-products generated from the processing of popular fruits of the Prunus genus (rich in high-added value compounds) has gained the spotlight in the food area. This review aims to provide an overview of the high added-value compounds found in the residues of Prunus fruits (peach, nectarine, donut peach, plum, cherry, and apricot) processing and applications in the food science area. Collective (pomace) and individual (kernels, peels, and leaves) residues from Prunus fruits processing contains polyphenols (especially flavonoids and anthocyanins), lipophilic compounds (such as unsaturated fatty acids, carotenes, tocopherols, sterols, and squalene), proteins (bioactive peptides and essential amino acids) that are wasted. Applications are increasingly expanding from the flour from the kernels to encapsulated bioactive compounds, active films, and ingredients with technological relevance for the quality of bread, cookies, ice cream, clean label meat products and extruded foods. Advances to increasing safety has also been reported against anti-nutritional (amygdalin) and toxic compounds (aflatoxin and pesticides) due to advances in emerging processing technologies and strategic use of resources.


Assuntos
Frutas , Prunus , Frutas/química , Prunus/química , Antioxidantes/análise , Antocianinas/análise , Polifenóis/análise
3.
Crit Rev Food Sci Nutr ; 63(18): 3130-3149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34606382

RESUMO

Tea manufactured from the cultivated shoots of Camellia sinensis (L.) O. Kuntze is the most commonly consumed nonalcoholic drink around the world. Tea is an agro-based, environmentally sustainable, labor-intensive, job-generating, and export-oriented industry in many countries. Tea includes phenolic compounds, flavonoids, alkaloids, vitamins, enzymes, crude fibers, protein, lipids, and carbohydrates, among other biochemical constituents. This review described the nature of tea metabolites, their biosynthesis and accumulation with response to various factors. The therapeutic application of various metabolites of tea against microbial diseases, cancer, neurological, and other metabolic disorders was also discussed in detail. The seasonal variation, cultivation practices and genetic variability influence tea metabolite synthesis. Tea biochemical constituents, especially polyphenols and its integral part catechin metabolites, are broadly focused on potential applicability for their action against various diseases. In addition to this, tea also contains bioactive flavonoids that possess health-beneficial effects. The catechin fractions, epigallocatechin 3-gallate and epicatechin 3-gallate, are the main components of tea that has strong antioxidant and medicinal properties. The synergistic function of natural tea metabolites with synthetic drugs provides effective protection against various diseases. Furthermore, the application of nanotechnologies enhanced bioavailability, enhancing the therapeutic potential of natural metabolites against numerous diseases and pathogens.


Assuntos
Camellia sinensis , Catequina , Catequina/farmacologia , Flavonoides/farmacologia , Flavonoides/metabolismo , Polifenóis/análise , Camellia sinensis/química , Chá/química
4.
Sensors (Basel) ; 23(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36679464

RESUMO

The quality and shelf life of meat and meat products are key factors that are usually evaluated by complex and laborious protocols and intricate sensory methods. Devices with attractive characteristics (fast reading, portability, and relatively low operational costs) that facilitate the measurement of meat and meat products characteristics are of great value. This review aims to provide an overview of the fundamentals of electronic nose (E-nose), eye (E-eye), and tongue (E-tongue), data preprocessing, chemometrics, the application in the evaluation of quality and shelf life of meat and meat products, and advantages and disadvantages related to these electronic systems. E-nose is the most versatile technology among all three electronic systems and comprises applications to distinguish the application of different preservation methods (chilling vs. frozen, for instance), processing conditions (especially temperature and time), detect adulteration (meat from different species), and the monitoring of shelf life. Emerging applications include the detection of pathogenic microorganisms using E-nose. E-tongue is another relevant technology to determine adulteration, processing conditions, and to monitor shelf life. Finally, E-eye has been providing accurate measuring of color evaluation and grade marbling levels in fresh meat. However, advances are necessary to obtain information that are more related to industrial conditions. Advances to include industrial scenarios (cut sorting in continuous processing, for instance) are of great value.


Assuntos
Produtos da Carne , Nariz Eletrônico , Carne/análise , Tecnologia , Movimento Celular
5.
Crit Rev Food Sci Nutr ; 62(11): 2888-2908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33345590

RESUMO

The quality and safety of food products are the two factors that most influence the demands made by consumers. Contractual food sterilization and preservation methods often result in unfavorable changes in functional properties of foods. High-pressure processing (HPP) (50-1000 MPa) is a non-thermal preservation technique, which can effectively reduce the activity of spoilage and pathogenic microorganisms with minimal impact on the functional and nutritional properties of food. Comprehensive inquires have disclosed the potential profits of HPP as an alternative to heat treatments by affecting the structure of milk components, particularly proteins and fats. The present paper aims to investigate the effects of HPP on milk components including fats, casein, whey proteins, enzymes, and minerals, as well as on the industrial production of milk and dairy products including cheese, yogurt, ice cream, butter, cream, and probiotic dairy products. HPP allows to extend shelf life of products without the use of additives, meeting current consumer demands. The assurance of microbial safety and the production of food products with minimal changes in quality characteristics (organoleptic, nutritional, and rheological properties) are among its main effects. In addition, the nutritional value of HPP-treated dairy products is also preserved.


Assuntos
Caseínas , Queijo , Animais , Caseínas/análise , Laticínios , Gorduras/análise , Micelas , Leite/química , Proteínas do Soro do Leite/química
6.
Crit Rev Food Sci Nutr ; : 1-20, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123812

RESUMO

The technological, sensory, and nutritional characteristics of meat products are directly related to their animal fat content. Adding animal fat to meat products significantly influences their sensory properties, such as color, taste, and aroma. In addition, the physicochemical properties of fat decisively contribute to the texture of meat products, playing a fundamental role in improving the properties of viscosity, creaminess, chewiness, cohesiveness, and hardness. However, meat products' high animal fat content makes them detrimental to a healthy diet. Therefore, reducing the fat content of meat products is an urgent need, but it is a challenge for researchers and the meat industry. The fat reduction in meat products without compromising the product's quality and with minor impacts on the production costs is not a simple task. Thus, strategies to reduce the fat content of meat products should be studied with caution. During the last decades, several fat replacers were tested, but among all of them, the use of flours and fibers, hydrocolloids, mushrooms, and some animal proteins (such as whey and collagen) presented promising results. Additionally, multiple strategies to gel oils of vegetable origin are also a current topic of study, and these have certain advantages such as their appearance (attempts to imitate animal fat), while also improving the nutritional profile of the lipid fraction of the products meat. However, each of these fat substitutes has both advantages and limitations in their use, which will be discussed in subsequent sections. Therefore, due to the growing interest in this issue, this review focuses on the main substitutes for animal fat used in the production of meat products, offering detailed and updated information on the latest discoveries and advances in this area.

7.
J Appl Microbiol ; 133(1): 91-103, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34689391

RESUMO

Fermentation has been an important strategy in the preservation of foods. The use of starter cultures with probiotic activity has gained the attention of researchers to produce functional fermented meat products. This review aims to overview the main strengths, weakness, opportunities and threats of fermented meat products with probiotics. Fermented meat products can be considered as a relevant matrix for the delivery of probiotics with potential health benefits. Moreover, fermented meat products produced by traditional methods are sources of probiotics that can be explored in the production of functional meat products. However, some barriers are limit the progression with these products: the complex selection process to obtain new and tailored probiotic strains, the current perception of healthiness associated with meat and meat products, and the limited application of probiotic to fermented sausages. Promising opportunities to improve the value of functional fermented meat products have been developed by exploring new meat products as functional fermented foods, improving the protection of probiotics with microencapsulation and improving the quality of meat product (reducing nitrate and nitrate salts, adding dietary fibre, and exploring the inherent antioxidant and cardioprotective activity of meat products). Attention to potential threats is also indicated such as the unclear future changes in meat and meat products consumption due to changes in consumer preferences and the presence of competitors (dairy, fruit and vegetable-based products, for instance) in more advanced stages of development and commercialization. SIGNIFICANCE AND IMPACT OF STUDY: This review provides an overview of the Strengths, Weakness, Opportunities and Threats related to the development of functional fermented meat products with probiotics. Internal and external factors that explain the current scenario and strategies to advance the production are highlighted.


Assuntos
Produtos da Carne , Probióticos , Fermentação , Carne , Nitratos
8.
Molecules ; 27(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36234832

RESUMO

Heracleum persicum Desf. ex Fischer seeds are a rich source of essential oils (EOs) with high antimicrobial and antioxidant effects. In order to determine the phytochemical variability in various Iranian H. persicum populations, seed samples were collected from 10 different climatic locations. The current study indicated that hexyl butyrate (20.9-44.7%), octyl acetate (11.2-20.3%), hexyl-2-methylbutyrate (4.81-8.64%), and octyl 2-methyl butyrate (3.41-8.91%) were the major components of the EOs. The maximum (44.7%) and the minimum (20.9%) content of hexyl butyrate were obtained from Kaleibar and Sari populations, respectively. Moreover, the octyl acetate content ranged from 2% (in Mahdasht) to 20.3% in Torghabeh population. The CA and PCA analysis divided the 10 Iranian H. persicum populations into three major groups. Populations from Khanghah, Kaleibar, Shebeilo, Showt, Mahdasht, and Amin Abbad showed a distinct separation in comparison with the other populations, having high contents of hexyl butyrate (39.8%) and low contents of octyl acetate (13.5%) (Chemotype II). According to correlation analysis, the highest correlation coefficient was among habitat elevation and hexyl butyrate content. In addition, the mean annual precipitation was negatively correlated with the content of hexyl butyrate. Although octyl acetate content showed high correlation with soil EC and mean annual temperature, it was not statistically significant. In general, in order to have plants with a high content of hexyl butyrate, it is recommended to harvest these plants from regions with high altitude and low rainfall such as Kaleibar.


Assuntos
Anti-Infecciosos , Heracleum , Óleos Voláteis , Acetatos , Antioxidantes , Butiratos , Heracleum/química , Irã (Geográfico) , Óleos Voláteis/química , Solo
9.
Compr Rev Food Sci Food Saf ; 21(1): 296-320, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34897991

RESUMO

Consumers demand healthy and natural food products. Thus, naturally derived antioxidants are emerging as a promising alternative to the use of present ingredients. Apples and apple derivative products (e.g., apple juice, apple cider, apple sauce, and others) are widely consumed throughout the world for a variety of different reasons and supply a large quantity of polyphenolic compounds. The extraction of polyphenolic compounds from apples and their incorporation into processed foods as naturally sourced ingredients could be a preferred alternative to commonly used commercial antioxidants that are used in many foods. In addition, they could have a positive impact on the environment and on the economy due to the utilization of byproducts generated during processing of apples, like apple pomace. In terms of the extraction procedures for the antioxidant compounds found in apples, the most efficient processes are methods that use ultrasound as the extraction tool. With this technique, greater yields are achieved, and less extraction time is required when compared with other, more conventional, extraction methods. However, parameters such as the extraction solvent, temperature during extraction, and extraction time must be suitably optimized in order to obtain the best performance and the highest antioxidant capacity. From an application standpoint, the use of apple-derived polyphenol extracts as a naturally derived food additive has documented applications for bread, meat, fish, cookies, and juices and there is evidence of increased antioxidant capacity, reduced rate of lipid oxidation, and increased storage time without compromising on sensory properties.


Assuntos
Malus , Polifenóis , Animais , Antioxidantes , Frutas/química , Malus/metabolismo , Estresse Oxidativo , Extratos Vegetais , Polifenóis/análise
10.
Compr Rev Food Sci Food Saf ; 21(3): 2200-2232, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35340098

RESUMO

Current demand of consumers for healthy and sustainable food products has led the industry to search for different sources of plant protein isolates and concentrates. Legumes represent an excellent nonanimal protein source with high-protein content. Legume species are distributed in a wide range of ecological conditions, including regions with drought conditions, making them a sustainable crop in a context of global warming. However, their use as human food is limited by the presence of antinutritional factors, such as protease inhibitors, lectins, phytates, and alkaloids, which have adverse nutritional effects. Antitechnological factors, such as fiber, tannins, and lipids, can affect the purity and protein extraction yield. Although most are removed or reduced during alkaline solubilization and isoelectric precipitation processes, some remain in the resulting protein isolates. Selection of appropriate legume genotypes and different emerging and sustainable facilitating technologies, such as high-power ultrasound, pulsed electric fields, high hydrostatic pressure, microwave, and supercritical fluids, can be applied to increase the removal of unwanted compounds. Some technologies can be used to increase protein yield. The technologies can also modify protein structure to improve digestibility, reduce allergenicity, and tune technological properties. This review summarizes recent findings regarding the use of emerging technologies to obtain high-purity protein isolates and the effects on techno-functional properties and health.


Assuntos
Fabaceae , Fibras na Dieta , Humanos , Proteínas de Plantas , Taninos , Verduras
11.
Mar Drugs ; 19(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919462

RESUMO

Rapid population growth and increasing food demand have impacts on the environment due to the generation of residues, which could be managed using sustainable solutions such as the circular economy strategy (waste generated during food processing must be kept within the food chain). Reusing discarded fish remains is part of this management strategy, since they contain high-value ingredients and bioactive compounds that can be used for the development of nutraceuticals and functional foods. Fish side streams such as the head, liver, or skin or the cephalothorax, carapace, and tail from shellfish are important sources of oils rich in omega-3. In order to resolve the disadvantages associated with conventional methods, novel extraction techniques are being optimized to improve the quality and the oxidative stability of these high-value oils. Positive effects on cardiovascular and vision health, diabetes, cancer, anti-inflammatory and neuroprotective properties, and immune system improvement are among their recognized properties. Their incorporation into different model systems could contribute to the development of functional foods, with market benefits for consumers. These products improve the nutritional needs of specific population groups in a scenario where noncommunicable diseases and pandemic crises are responsible for several deaths worldwide.


Assuntos
Suplementos Nutricionais , Óleos de Peixe/farmacologia , Peixes/metabolismo , Manipulação de Alimentos , Alimento Funcional , Alimentos Marinhos , Resíduos , Animais , Cromatografia com Fluido Supercrítico , Óleos de Peixe/isolamento & purificação , Química Verde , Humanos , Valor Nutritivo
12.
Mar Drugs ; 19(7)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203532

RESUMO

Marine alkaloids comprise a class of compounds with several nitrogenated structures that can be explored as potential natural bioactive compounds. The scientific interest in these compounds has been increasing in the last decades, and many studies have been published elucidating their chemical structure and biological effects in vitro. Following this trend, the number of in vivo studies reporting the health-related properties of marine alkaloids has been increasing and providing more information about the effects in complex organisms. Experiments with animals, especially mice and zebrafish, are revealing the potential health benefits against cancer development, cardiovascular diseases, seizures, Alzheimer's disease, mental health disorders, inflammatory diseases, osteoporosis, cystic fibrosis, oxidative stress, human parasites, and microbial infections in vivo. Although major efforts are still necessary to increase the knowledge, especially about the translation value of the information obtained from in vivo experiments to clinical trials, marine alkaloids are promising candidates for further experiments in drug development.


Assuntos
Alcaloides/metabolismo , Organismos Aquáticos , Alcaloides/química , Animais , Modelos Animais , Relação Estrutura-Atividade
13.
Food Control ; 122: 107800, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33281304

RESUMO

This study provides an important insight into the response of food safety systems during the first months of the pandemic, elevating the perspective of preventing Covid-19 within conventional food safety management systems. A multi-country survey was conducted in 16 countries involving 825 food companies. Based on the results of the survey, it is obvious that the level of maturity of a food safety system in place is the main trigger in classifying companies and their responses to the pandemic challenge. Staff awareness and hygiene are the two most important attributes in combating Covid-19, opposed to temperature checking of workers in food establishment and health protocols from the World Health Organization, recognized as attributes with limited salience and importance. Companies confirmed implementation of more restrictive hygiene procedures during the pandemic and the need for purchasing more additional personal protective equipment. Retailers were identified as the food supply chain link mostly affected by the pandemic opposed to food storage facilities ranked as least affected. During this challenging period, all companies declared that food safety has not been compromised at any moment. It is important to note that less than a half of the food companies had documented any emergency plans associated with pandemics and health issues in place.

14.
Molecules ; 26(1)2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-33401677

RESUMO

Current culture and pace of lifestyle, together with consumer demand for ready-to-eat foods, has influenced the food industry, particularly the meat sector. However, due to the important role that diet plays in human health, consumers demand safe and healthy food products. As a consequence, even foods that meet expectations for convenience and organoleptic properties must also meet expectations from a nutritional standpoint. One of the main nutritionally negative aspects of meat products is the content and composition of fat. In this sense, the meat industry has spent decades researching the best strategies for the reformulation of traditional products, without having a negative impact in technological processes or in the sensory acceptance of the final product. However, the enormous variety of meat products as well as industrial and culinary processes means that a single strategy cannot be established, despite the large volume of work carried out in this regard. Therefore, taking all the components of this complex situation into account and utilizing the large amount of scientific information that is available, this review aims to comprehensively analyze recent advances in the use of lipid bio-based materials to reformulate meat products, as well as their nutritional, technological, and sensorial implications.


Assuntos
Tecnologia de Alimentos/métodos , Indústria de Processamento de Alimentos/métodos , Lipídeos/química , Produtos da Carne , Animais , Gorduras na Dieta , Emulsões/química , Ácidos Graxos/química , Hidrogéis/química , Compostos Orgânicos/química , Óleos de Plantas/química
15.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807800

RESUMO

The objective of this study was to characterize the properties of pectin extracted from sugar beet pulp using subcritical water (SWE) as compared to conventional extraction (CE). The research involved advanced modeling using response surface methodology and optimization of operational parameters. The optimal conditions for maximum yield of pectin for SWE and CE methods were determined by the central composite design. The optimum conditions of CE were the temperature of 90 °C, time of 240 min, pH of 1, and pectin recovery yield of 20.8%. The optimal SWE conditions were liquid-to-solid (L/S) ratio of 30% (v/w) at temperature of 130 °C for 20 min, which resulted in a comparable yield of 20.7%. The effect of obtained pectins on viscoamylograph pasting and DSC thermal parameters of corn starch was evaluated. The contents of galacturonic acid, degree of methylation, acetylation, and ferulic acid content were higher in the pectin extracted by SWE, while the molecular weight was lower. Similar chemical groups were characterized by FTIR in both SWE and CE pectins. Color attributes of both pectins were similar. Solutions of pectins at lower concentrations displayed nearly Newtonian behavior. The addition of both pectins to corn starch decreased pasting and DSC gelatinization parameters, but increased ΔH. The results offered a promising scalable approach to convert the beet waste to pectin as a value-added product using SWE with improved pectin properties.


Assuntos
Beta vulgaris/química , Fracionamento Químico/métodos , Pectinas/química , Pectinas/isolamento & purificação , Acetilação , Cor , Ácidos Cumáricos/análise , Ácidos Hexurônicos/análise , Concentração de Íons de Hidrogênio , Metilação , Peso Molecular , Reologia , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química , Temperatura
16.
Molecules ; 26(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210093

RESUMO

The development of plant-based functional food ingredients has become a major focus of the modern food industry as a response to changes in consumer attitudes. In particular, many consumers are switching to a plant-based diet because of their concerns about animal-derived foods on the environment, human health, and animal welfare. There has therefore been great interest in identifying, isolating, and characterizing functional ingredients from botanical sources, especially waste streams from food and agricultural production. However, many of these functional ingredients cannot simply be incorporated into foods because of their poor solubility, stability, or activity characteristics. In this article, we begin by reviewing conventional and emerging methods of extracting plant-based bioactive agents from natural resources including ultrasound-, microwave-, pulsed electric field- and supercritical fluid-based methods. We then provide a brief overview of different methods to characterize these plant-derived ingredients, including conventional, chromatographic, spectroscopic, and mass spectrometry methods. Finally, we discuss the design of plant-based delivery systems to encapsulate, protect, and deliver these functional ingredients, including micelles, liposomes, emulsions, solid lipid nanoparticles, and microgels. The potential benefits of these plant-based delivery systems are highlighted by discussing their use for incorporating functional ingredients into traditional meat products. However, the same technologies could also be employed to introduce functional ingredients into plant-based meat analogs.


Assuntos
Suplementos Nutricionais , Indústria Alimentícia , Alimento Funcional , Produtos da Carne , Nanopartículas/química , Compostos Fitoquímicos/química , Animais , Humanos , Lipossomos
17.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924445

RESUMO

Activated carbon prepared from lemon (Citrus limon) wood (ACL) and ACL/Fe3O4 magnetic nanocomposite were effectively used to remove the cationic dye of crystal violet (CV) from aqueous solutions. The results showed that Fe3O4 nanoparticles were successfully placed in the structure of ACL and the produced nanocomposites showed superior magnetic properties. It was found that pH was the most effective parameter in the CV dye adsorption and pH of 9 gave the maximum adsorption efficiency of 93.5% and 98.3% for ACL and ACL/Fe3O4, respectively. The Dubinin-Radushkevich (D-R) and Langmuir models were selected to investigate the CV dye adsorption equilibrium behavior for ACL and ACL/Fe3O4, respectively. A maximum adsorption capacity of 23.6 and 35.3 mg/g was obtained for ACL and ACL/Fe3O4, respectively indicating superior adsorption capacity of Fe3O4 nanoparticles. The kinetic data of the adsorption process followed the pseudo-second order (PSO) kinetic model, indicating that chemical mechanisms may have an effect on the CV dye adsorption. The negative values obtained for Gibb's free energy parameter (-20 < ΔG < 0 kJ/mol) showed that the adsorption process using both types of the adsorbents was physical. Moreover, the CV dye adsorption enthalpy (ΔH) values of -45.4 for ACL and -56.9 kJ/mol for ACL/Fe3O4 were obtained indicating that the adsorption process was exothermic. Overall, ACL and ACL/Fe3O4 magnetic nanocomposites provide a novel and effective type of adsorbents to remove CV dye from the aqueous solutions.

18.
Molecules ; 26(2)2021 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-33477314

RESUMO

In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.


Assuntos
Antioxidantes/química , Suplementos Nutricionais , Conservantes de Alimentos/química , Frutas/química , Carne , Extratos Vegetais/química , Punica granatum/química , Animais , Humanos
19.
Molecules ; 26(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799855

RESUMO

The design of functional foods has grown recently as an answer to rising consumers' concerns and demands for natural, nutritional and healthy food products. Nanoencapsulation is a technique based on enclosing a bioactive compound (BAC) in liquid, solid or gaseous states within a matrix or inert material for preserving the coated substance (food or flavor molecules/ingredients). Nanoencapsulation can improve stability of BACs, improving the regulation of their release at physiologically active sites. Regarding materials for food and nutraceutical applications, the most used are carbohydrate-, protein- or lipid-based alternatives such as chitosan, peptide-chitosan and ß-lactoglobulin nanoparticles (NPs) or emulsion biopolymer complexes. On the other hand, the main BACs used in foods for health promoting, including antioxidants, antimicrobials, vitamins, probiotics and prebiotics and others (minerals, enzymes and flavoring compounds). Nanotechnology can also play notable role in the development of programmable food, an original futuristic concept promising the consumers to obtain high quality food of desired nutritive and sensory characteristics.


Assuntos
Manipulação de Alimentos/métodos , Nanotecnologia/métodos , Suplementos Nutricionais , Alimentos , Alimento Funcional , Humanos , Minerais , Prebióticos , Probióticos , Vitaminas
20.
Molecules ; 26(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202027

RESUMO

At present, a wide variety of analytical methods is available to measure antioxidant capacity. However, this great diversity is not reflected in the analysis of meat and meat products, as there are a limited number of studies on determining this parameter in this complex food matrix. Despite this, and due to the interest in antioxidants that prevent oxidation reactions, the identification of antioxidants in meat and meat products is of special importance to the meat industry. For this reason, this review compiled the main antioxidant capacity assays employed in meat and meat products, to date, describing their foundations, and showing both their advantages and limitations. This review also looked at the different applications of antioxidant properties in meat and meat products. In this sense, the suitability of using these methodologies has been demonstrated in different investigations related to these foods.


Assuntos
Antioxidantes/análise , Análise de Alimentos , Produtos da Carne/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA