Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Crit Rev Biotechnol ; : 1-19, 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37743323

RESUMO

Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.

2.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409104

RESUMO

Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20-50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.


Assuntos
Secas , Plantas , Agricultura , Bactérias/genética , Plantas/metabolismo , Salinidade , Estresse Salino , Estresse Fisiológico/genética
3.
Microb Pathog ; 129: 136-145, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742948

RESUMO

The present study envisages biological production of silver nanoparticles using Fusarium oxysporum and in-silico identification of the antibacterial activity of the nanoparticles using protein-ligand interaction studies. The morphology of the nanoparticles was variable, with majority of them spherical in the size range 1-50 nm. For in-silico studies, two microorganisms, Escherichia coli and Pseudomonas aeruginosa were selected and metal docking was carried out using the licensed software SYBYL X 1.1.1. The ligand docked deeply into the binding pockets of the outer membrane proteins (OMPs) of both E. coli and P. aeruginosa. The results showed that silver may prove to be a strong antibacterial agent against both the pathogens, with the antibacterial action of silver being greater in the case of P. aeruginosa. The results obtained through in-silico studies were further validated by in-vitro approaches on both solid and liquid media to confirm the results obtained by in-silico analysis. The corroboration of in-silico and in-vitro results amply demonstrates the immense antibacterial potential of silver nanoparticles against the selected pathogens.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fusarium/metabolismo , Nanopartículas Metálicas , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/farmacologia , Antibacterianos/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Simulação por Computador , Ligantes , Ligação Proteica , Prata/metabolismo
4.
Nutr Cancer ; 71(4): 676-687, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30265812

RESUMO

A natural predominant flavonoid hesperidin rich in citrus fruits exhibits multifunctional medicinal properties. The anticancerous potential of hesperidin has been widely explored; however, the gall bladder carcinoma (GBC) still remains untouched due to the unavailability of efficient experimental model. The aim of our study was to identify the apoptotic and antiproliferative potential of hesperidin in GBC. The promising efficacy of hesperidin was assessed through the generation of reactive oxygen species (ROS), cellular apoptosis, and loss of mitochondrial membrane potential (MMP) in the primary cells generated from surgically removed cancerous gall bladder tissues. Moreover, cell cycle analysis and caspases-3 activity were performed to confirm the apoptosis inducing potential of hesperidin. Results revealed that hesperidin exposure for 24 h at a dose of 200 µM reduced the cell proliferation of GBC cells significantly. In addition, hesperidin treatment further resulted in an increased ROS generation and nuclear condensation at the same dose. Caspase-3 activation and cell cycle arrest at G2/M phase were also accelerated in a dose-dependent manner. Together, these results suggest that hesperidin can be considered as a potential anticancerous compound for the treatment of GBC. Furthermore, evaluation of the pharmacological aspects of hesperidin is desirable for drug development.


Assuntos
Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias da Vesícula Biliar/tratamento farmacológico , Neoplasias da Vesícula Biliar/patologia , Hesperidina/farmacologia , Acetilcisteína/farmacologia , Animais , Antineoplásicos Fitogênicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apoptose/fisiologia , Caspase 3/metabolismo , Pontos de Checagem do Ciclo Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Relação Dose-Resposta a Droga , Neoplasias da Vesícula Biliar/metabolismo , Hesperidina/administração & dosagem , Humanos , Macrófagos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Gencitabina
5.
Biotechnol Appl Biochem ; 63(3): 441-50, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25817271

RESUMO

Toll-like receptors recognizing pathogen-associated molecular patterns are preface actors for innate immunity. Among them TLR7 is a transmembrane protein playing very crucial role in the signaling pathways involved in innate immunity by recognizing viral ssRNA and specific small molecule agonists. The unavailability of experimental 3D structure of this receptor till date hampers the focused exploration of TLR7 interaction with its ligands. However, several proteins possessing high homology domain enabled us to construct a reliable 3D model of hTLR7 ECD, which was employed to generate the homodimer model using protein-protein docking strategy. Further molecular docking studies between developed homodimer model and ligands were performed to explore the most preferred site of hTLR7 ECD interacting with ligands. The comparative analysis of docking energies and protein-ligand interactions of all the ligands revealed resiquimod as the prominent agonist. Furthermore, molecular interactions between protein-ligand complexes suggested LRR15 and LRR16 region of hTLR7 ECD as the most preferential site for ligand binding. The Ser434 and Gly437 of LRR15 region of hTLR7 were found to be conserved with Drosophila Toll protein. The obtained complex model may lead to a better understanding of TLR7 functioning along with its inheritance from invertebrates to mammals.


Assuntos
Simulação por Computador , Receptor 7 Toll-Like/química , Receptor 7 Toll-Like/metabolismo , Animais , Drosophila melanogaster , Humanos , Ligantes , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Alinhamento de Sequência
6.
Biochem Biophys Res Commun ; 459(3): 424-9, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25735984

RESUMO

The precise and potential contribution of Toll-like receptors (TLRs) signaling pathways in fighting parasitic infections of Leishmania spp., an intracellular protozoan parasite, has gained significant attention during the last decades. Although it is well established that TLR9 recognizes CpG motifs in microbial genomes, the specificity of the CpG DNA pattern of Leishmania parasite interacting with endosomal TLR9 is still unknown. Hence in our study to identify the CpG DNA pattern of Leishmania donovani acting as ligand for TLR9, consecutive homology searches were performed using known CpG ODN 2216 as initial template until a consistent CpG pattern in L. donovani was found. A reliable model of TLR9 ectodomains (ECDs) as well as CpG DNA patterns was predicted to develop the 3D structural complexes of TLR9 ECD-CpG DNA utilizing molecular modeling and docking approaches. The results revealed the preferential specificity of L. donovani CpG DNA to TLR9 compared to control ODN and other CpG patterns. The interface between TLR9 and L. donovani CpG DNA was also found to be geometrically complementary with the LRR11 region of TLR9, acting as the critical region for ligand recognition. The L. donovani CpG pattern identified can be employed to derive a platform for development of an innate immunomodulatory agent for deadly disease.


Assuntos
DNA de Protozoário/genética , Leishmania donovani/genética , Leishmania donovani/imunologia , Oligodesoxirribonucleotídeos/genética , Receptor Toll-Like 9/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Biologia Computacional , Ilhas de CpG , DNA de Protozoário/química , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Leishmania donovani/patogenicidade , Ligantes , Camundongos , Modelos Moleculares , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Conformação Proteica , Receptor Cross-Talk , Transdução de Sinais , Receptor Toll-Like 9/química
7.
BMC Microbiol ; 15: 52, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25881309

RESUMO

BACKGROUND: Particulates of nanometers size have occupied a significant area in the field of medicinal and agricultural purposes due to their large surface-to-volume ratio and exceptional physicochemical, electronic and mechanical properties. Myconanotechnology, an interface between mycology and nanotechnology is budding nowadays for nanoparticle-fabrication using fungus or its metabolites. In the present study, we have isolated and characterized a novel phosphate solubilizing fungus B. tetramera KF934408 from rhizospheric soil. This phosphatase releasing fungus was subjected to extracellular synthesis of metal nanoparticles by redox reaction. RESULTS: Silver (AgNPs) and gold nanoparticles (AuNPs) were characterized by dynamic light scattering and transmission electron microscopic analysis. The formulated AgNPs were irregular shaped with a size ranging between 54.78 nm to 73.49 nm whereas AuNPs were spherical or hexagonal, with a size of 58.4 and 261.73 nm, respectively. The nanoparticles were assessed for their antibacterial and antifungal efficacy. The results showed effective antimicrobial activity of AgNPs against Bacillus cereus, Staphylococcus aureus, Enterobacter aeroginosa and Trichoderma sp. at higher concentrations, however, AuNPs possessed only moderate antibacterial efficacy while they found no antifungal activity. Cytotoxicity analysis of nanoparticles on J774 and THP1 α cell lines revealed the dose dependence in case of AgNPs, while AuNPs were non-toxic at both low and high doses. Furthermore, significant elevation of intracellular ROS was observed after 4 h of incubation with both the nanoparticles. The capping of fungal proteins on the particulates might be involved in the activities demonstrated by these inert metal nanoparticles. CONCLUSION: In conclusion, the findings showed that the metal nanoparticles synthesized by fungus B. tetramera could be used as an antimicrobial agents as well as cost effective and nontoxic immunomodulatory delivery vehicle.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Proteínas Fúngicas/química , Nanopartículas Metálicas/química , Monoéster Fosfórico Hidrolases/química , Saccharomycetales/enzimologia , Antibacterianos/metabolismo , Antifúngicos/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Enterobacter aerogenes/efeitos dos fármacos , Enterobacter aerogenes/crescimento & desenvolvimento , Ouro/química , Humanos , Fatores Imunológicos/biossíntese , Fatores Imunológicos/farmacologia , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Nanotecnologia/métodos , Oxirredução , Tamanho da Partícula , Fosfatos/química , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Saccharomycetales/química , Prata/química , Solubilidade , Trichoderma/efeitos dos fármacos , Trichoderma/crescimento & desenvolvimento
8.
Nutr Cancer ; 66(5): 857-71, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24820939

RESUMO

Intervention to decelerate, arrest, or reverse the process of carcinogenesis by the use of either natural or synthetic agents individually or in combination has emerged as a promising and pragmatic medical approach to reduce cancer risk. In the present study, we examined the cancer chemopreventive potential of a flavonoid-rich fraction isolated from the seeds of Carica papaya, a plant traditionally referred to as papaw. The flavonoid-enriched benzene fraction of the aqueous extract exerted its anticancer properties in vitro through cytoprotection, antioxidative and antiinflammatory mechanisms and genoprotection in response to isocyanate-induced carcinogenicity. Medium-term anticarcinogenicity and 2-stage skin papillomagenesis studies conducted in benzopyrene-induced lung carcinogenesis and 7,12-dimethyl benz(a)anthracene-mediated skin papillomagenesis mouse models further validated our in vitro observations. This is the first demonstration of chemopreventive activities of papaya seed products, however, further studies to understand the subtle targets of intracellular signaling pathways, pharmacological profile and toxicological safety of this bioactive fraction are essential to pave the way for successful clinical translation. Our study supports the inverse association between dietary flavonoid intake and cancer risk.


Assuntos
Anticarcinógenos/farmacologia , Carica/química , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Sementes/química , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Quimioprevenção , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Camundongos , Estresse Fisiológico/efeitos dos fármacos
9.
Environ Toxicol ; 29(3): 284-97, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22223508

RESUMO

Liver is often exposed to plethora of chemical toxins. Owing to its profound physiological role and central function in metabolism and homeostasis, pertinent succession of cell cycle in liver epithelial cells is of prime importance to maintain cellular proliferation. Although recent evidence has displayed a strong association between exposures to methyl isocyanate (MIC), one of the most toxic isocyanates, and neoplastic transformation, molecular characterization of the longitudinal effects of MIC on cell cycle regulation has never been performed. Here, we sequentially delineated the status of different proteins arbitrating the deregulation of cell cycle in liver epithelial cells treated with MIC. Our data reaffirms the oncogenic capability of MIC with elevated DNA damage response proteins pATM and γ-H2AX, deregulation of DNA damage check point genes CHK1 and CHK2, altered expression of p53 and p21 proteins involved in cell cycle arrest with perturbation in GADD-45 expression in the treated cells. Further, alterations in cyclin A, cyclin E, CDK2 levels along with overexpression of mitotic spindle checkpoints proteins Aurora A/B, centrosomal pericentrin protein, chromosomal aberrations, and loss of Pot1a was observed. Thus, MIC impacts key proteins involved in cell cycle regulation to trigger genomic instability as a possible mechanism of developmental basis of liver carcinogenesis.


Assuntos
Ciclo Celular/efeitos dos fármacos , Dano ao DNA , Isocianatos/toxicidade , Fígado/efeitos dos fármacos , Animais , Carcinogênese , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Aberrações Cromossômicas/induzido quimicamente , Células Epiteliais/efeitos dos fármacos , Fígado/citologia , Camundongos
10.
Int J Toxicol ; 33(2): 116-29, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563415

RESUMO

Emerging studies have linked prooxidative carbamate compound exposures with various human pathologies including pancreatic cancer. In these studies, our aim was to examine mitochondrial oxidative stress-mediated aberrant chromatin responses in human pancreatic ductal epithelial cells. Posttranslational histone modifications, promoter DNA methylation, and micro-RNA (miRNA) expression patterns were evaluated following induction of mitochondrial oxidative stress by N-succinimidyl N-methylcarbamate exposure. In treated cells, perturbation in mitochondrial machinery led to hypermethylation of p16 and smad4 gene promoters and downregulation of respective gene products. Posttranslational histone modifications that include hypoacetylation of acetylated histone (AcH) 3 and AcH4, hypermethylation of monomethylated histone 3 at lysine 9 and trimethylated histone 4 at lysine 20 ubiquitinated histone (uH) 2A/uH2B, and increased phosphorylation of H2AX and H3 were observed in the treated cells. Altered expression of miRNAs denoted possible location of corresponding genes at oxidatively damaged fragile sites. Collectively, our results provide a direct role of mitochondrial oxidative stress-mediated epigenetic imbalance to perturbed genomic integrity in oxygen radical-induced pancreatic injury. Further, identification and characterization of molecular switches that affect these epigenomic signatures and targets thereof will be imperative to understand the complex role of redox-regulatory network in pancreatic milieu.


Assuntos
Epigênese Genética/fisiologia , Células Epiteliais/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Pâncreas/metabolismo , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Citocinas/metabolismo , Dano ao DNA/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , MicroRNAs/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Smad4/metabolismo
11.
J Environ Biol ; 35(6): 1061-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25522506

RESUMO

A study was conducted to examine the level of nonstructural carbohydrate, protein concentration and the activity of antioxidative enzymes viz. catalase and peroxidase in buds of different stages (Stages: I-before flower bud differentiation, II-flower bud differentiation, III-bud burst, IV-panicle elongation) and their adjacent leaves of biennial (Chausa, Dashehari, Langra) and the regular (Amrapali) cultivars. In the present study, Amrapali being the regular cultivar, contained higher levels of total and reducing sugar (4.49 to 12.67 mg g(-1) f.wt.) and protein content (1.90 to 6.78 mg g(-1)) in all the developmental stages of flowering as compared to biennial cultivars. However, in leaves gradual reduction in sugar and protein content was noticed in the advance stages of flowering. Paclobutrazol (2-8 g.a.i.), a flower inducing chemical, enhanced the catalase and peroxidase activities over the untreated control and maximum enhancement was recorded at 8 g.a.i. On the other hand, decreasing trend of protein with paclobutrazol treatment was recorded in adjacent leaves of flower buds. The results implicated the possible role of catalase and peroxidase and other associated biochemical changes in paclobutrazol induced flowering in mango.


Assuntos
Antioxidantes/metabolismo , Catalase/metabolismo , Flores/efeitos dos fármacos , Mangifera/efeitos dos fármacos , Peroxidases/metabolismo , Triazóis/farmacologia , Flores/fisiologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mangifera/enzimologia
12.
Indian J Clin Biochem ; 29(1): 38-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24478547

RESUMO

Increased leukocyte apoptosis is intrinsically linked to disease patho-physiology, susceptibility to and severity of infections in type 2 diabetes mellitus (T2DM) patients. A consistent defect in neutrophil function is considered central to this increased risk for infections. Although redox imbalance is considered a potential mediator of these associated complications, detailed molecular evidence in clinical samples remains largely undetected. The study consisted of three groups (n = 50 each) of Asian Indians: early diagnosed diabetic patients, cases with late-onset diabetic complications and age and gender-matched healthy controls. We evaluated mitochondrial oxidative stress, levels of nuclear DNA damage and apoptosis in peripheral blood neutrophils isolated from T2DM patients. We observed that in both early and late diabetic subjects, the HbA1c levels in neutrophils were altered considerably with respect to healthy controls. Increased oxidative stress observed in both early and late diabetics imply the disentanglement of fine equilibrium of mitochondria-nuclear cross talk which eventually effected the augmentation of downstream nuclear γH2AX activation and caspase-3 expression. It would be overly naïve to refute the fact that mitochondrial deregulation in neutrophils perturbs immunological balance in type 2 diabetic conditions. By virtue of our data, we posit that maneuvering mitochondrial function might offer a prospective and viable method to modulate neutrophil function in T2DM. Nevertheless, similar investigations from other ethnic groups in conjunction with experimental evidences would be a preeminent need. Obviously, our study might aid to comprehend this complex interplay between mitochondrial dysfunction and neutrophil homeostasis in T2DM.

13.
Mol Biotechnol ; 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37316612

RESUMO

Psidium guajava fruits are highly appreciated for their nutrients and bioactive compounds content, which contribute to their antioxidant and antimicrobial capacities. The purpose of this study was to determine bioactive compound (phenolic, flavonoids, and carotenoid contents), antioxidant activity (DPPH, ABTS, ORAC, and FRAP), and antibacterial potential against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus during different stages of fruit ripening.The results elucidated that ripe fruits (methanolic extract) contain the highest total phenolic, flavonoids, and carotenoid contents (417.36 ± 2.63 µg GAE/gm of FW, 711.78 ± 0.70 µg QE/gm of FW and 0.683 ± 0.06 µg/gm of FW) followed by hexane, ethyl acetate, and aqueous. Methanolic extract of the ripe fruits showed the highest antioxidant activity when measured by DPPH (61.55 ± 0.91%), FRAP (31.83 ± 0.98 mM Fe(II)/gm of FW), ORAC (17.19 ± 0.47 mM TE/ gm of FW), and ABTS (41.31 ± 0.99 µmol Trolox/gm of FW) assays. In the antibacterial assay, the ripe stage had the highest antibacterial activity against MDR and food-borne pathogenic strains of Escherichia coli, and Staphylococcus aureus. The methanolic ripe extract was found to possess maximum antibacterial activity ZOI, MIC, and IC50 18.00 ± 1.00 mm, 95.95 ± 0.05%, and 0.58 µg/ml; 15.66 ± 0.57 mm, 94.66 ± 0.19%, and 0.50 µg/ml, respectively, against pathogenic and MDR strains of E. coli and 22.33 ± 0.57 mm, 98.97 ± 0.02%, and 0.26 µg/ml; 20.33 ± 1.15 mm, 96.82 ± 0.14%, and 0.39 µg/ml, respectively, against pathogenic and MDR strains of S. aureus. Considering the bioactive compounds and beneficial effects, these fruit extracts could be promising antibiotic alternatives, avoiding antibiotic overuse and its negative effects on human health and the environment, and can be recommended as a novel functional food.

14.
Front Microbiol ; 14: 1168954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077243

RESUMO

Toxic wastes like heavy metals and dyes are released into the environment as a direct result of industrialization and technological progress. The biosorption of contaminants utilizes a variety of biomaterials. Biosorbents can adsorb toxic pollutants on their surface through various mechanisms like complexation, precipitation, etc. The quantity of sorption sites that are accessible on the surface of the biosorbent affects its effectiveness. Biosorption's low cost, high efficiency, lack of nutrient requirements, and ability to regenerate the biosorbent are its main advantages over other treatment methods. Optimization of environmental conditions like temperature, pH, nutrient availability, and other factors is a prerequisite to achieving optimal biosorbent performance. Recent strategies include nanomaterials, genetic engineering, and biofilm-based remediation for various types of pollutants. The removal of hazardous dyes and heavy metals from wastewater using biosorbents is a strategy that is both efficient and sustainable. This review provides a perspective on the existing literature and brings it up-to-date by including the latest research and findings in the field.

15.
Artigo em Inglês | MEDLINE | ID: mdl-38394398

RESUMO

BACKGROUND: The incidence of meningoencephalitis (ME) in India is poorly understood, and the exact etiological diagnosis is often not possible. This study was planned to elucidate the bacterial and viral etiological diagnosis of ME in children less than 5 years of age. MATERIAL AND METHODS: The present study was conducted in Virus Research and Diagnostic Laboratory (VRDL), Department of Microbiology, King George's Medical University, Lucknow, from July 2020 to June 2022. Serum, cerebrospinal fluid (CSF), and nose/throat swabs were collected from all the enrolled cases of meningoencephalitis in children below 5 years of age and tested for various etiological agents by ELISA and/or real-time PCR. RESULTS: Of 130 enrolled cases, 50 (38.5%) cases tested positive for one or more etiological agents. Etiological agents of ME detected were Japanese encephalitis virus (JEV) (8.46%), adenovirus (6.92%), influenza virus (5.38%), dengue virus (3.85%), Parvo B-19 virus (3.08%), Orientia tsutsugamushi (3.08%), Herpes Simplex Virus-1 (HSV-1) (1.54%), measles virus (1.54%), and Varicella-Zoster Virus (VZV) (1.54%). Rubella virus, Chikungunya virus (CHKV), Mumps virus, Enteroviruses, Parecho virus, John Cunningham virus (JC), BK virus, Nipah virus, Kyasanur Forest Disease virus (KFD), Chandipura virus, Herpes Simplex Virus (HSV-2), SARS CoV-2, N. Meningitides, and H. Influenzae were tested but not detected in any of the cases. CONCLUSION: We identified the etiological agents in 50/130 (38.5%) suspected ME cases in children less than 5 years of age, using molecular and ELISA-based diagnostic methods. The four most common pathogens detected were JEV, adenovirus, influenza virus, and dengue virus.

16.
Toxics ; 11(11)2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37999592

RESUMO

The presence of dye in wastewater causes substantial threats to the environment, and has negative impacts not only on human health but also on the health of other organisms that are part of the ecosystem. Because of the increase in textile manufacturing, the inhabitants of the area, along with other species, are subjected to the potentially hazardous consequences of wastewater discharge from textile and industrial manufacturing. Different types of dyes emanating from textile wastewater have adverse effects on the aquatic environment. Various methods including physical, chemical, and biological strategies are applied in order to reduce the amount of dye pollution in the environment. The development of economical, ecologically acceptable, and efficient strategies for treating dye-containing wastewater is necessary. It has been shown that microbial communities have significant potential for the remediation of hazardous dyes in an environmentally friendly manner. In order to improve the efficacy of dye remediation, numerous cutting-edge strategies, including those based on nanotechnology, microbial biosorbents, bioreactor technology, microbial fuel cells, and genetic engineering, have been utilized. This article addresses the latest developments in physical, chemical, eco-friendly biological and advanced strategies for the efficient mitigation of dye pollution in the environment, along with the related challenges.

17.
Front Oncol ; 12: 852424, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359388

RESUMO

Cancer formation is a highly regulated and complex process, largely dependent on its microenvironment. This complexity highlights the need for developing novel target-based therapies depending on cancer phenotype and genotype. Autophagy, a catabolic process, removes damaged and defective cellular materials through lysosomes. It is activated in response to stress conditions such as nutrient deprivation, hypoxia, and oxidative stress. Oxidative stress is induced by excess reactive oxygen species (ROS) that are multifaceted molecules that drive several pathophysiological conditions, including cancer. Moreover, autophagy also plays a dual role, initially inhibiting tumor formation but promoting tumor progression during advanced stages. Mounting evidence has suggested an intricate crosstalk between autophagy and ROS where they can either suppress cancer formation or promote disease etiology. This review highlights the regulatory roles of autophagy and ROS from tumor induction to metastasis. We also discuss the therapeutic strategies that have been devised so far to combat cancer. Based on the review, we finally present some gap areas that could be targeted and may provide a basis for cancer suppression.

18.
Front Nutr ; 9: 1061098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523336

RESUMO

Jackfruit is a potential natural resource for many valuable biomaterials. The wastes from jackfruit are rich in carbohydrate, proteins, fats and phytochemicals. These wastes can be used as feedstock for the development of various bioproducts. The pretreatment strategies like biological, physical and chemical methods are being used for effective valorization of fruit wastes into value added products, like bioethanol, biogas, bioplastics, feeds, functional food additives, and other useful compounds. Bioenergy production from such renewable resources is an eco-friendly and cost-effective alternative option of fuels, unlike fossil fuels. The efficient bioconversion of fruit waste into useful biomaterials is facilitated by microbial fermentation process. Also, jackfruit peel is applied in the pollution abatement by remediation of dyes color from contaminated aquatic environment. Such technology can be used to develop a green economic model for waste utilization. This review addressed the utilization feasibility of jackfruit waste to produce value added products in order to reduce wastes and protect environment in a sustainable way.

19.
Front Nutr ; 9: 963413, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911098

RESUMO

Nowadays, effective cancer therapy is a global concern, and recent advances in nanomedicine are crucial. Cancer is one of the major fatal diseases and a leading cause of death globally. Nanotechnology provides rapidly evolving delivery systems in science for treating diseases in a site-specific manner using natural bioactive compounds, which are gaining widespread attention. Nanotechnology combined with bioactives is a very appealing and relatively new area in cancer treatment. Natural bioactive compounds have the potential to be employed as a chemotherapeutic agent in the treatment of cancer, in addition to their nutritional benefits. Alginate, pullulan, cellulose, polylactic acid, chitosan, and other biopolymers have been effectively used in the delivery of therapeutics to a specific site. Because of their biodegradability, biopolymeric nanoparticles (BNPs) have received a lot of attention in the development of new anticancer drug delivery systems. Biopolymer-based nanoparticle systems can be made in a variety of ways. These systems have developed as a cost-effective and environmentally friendly solution to boost treatment efficacy. Effective drug delivery systems with improved availability, increased selectivity, and lower toxicity are needed. Recent research findings and current knowledge on the use of BNPs in the administration of bioactive chemicals in cancer therapy are summarized in this review.

20.
Plants (Basel) ; 11(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36501260

RESUMO

Arsenic contamination in water and soil is becoming a severe problem. It is toxic to the environment and human health. It is usually found in small quantities in rock, soil, air, and water which increase due to natural and anthropogenic activities. Arsenic exposure leads to several diseases such as vascular disease, including stroke, ischemic heart disease, and peripheral vascular disease, and also increases the risk of liver, lungs, kidneys, and bladder tumors. Arsenic leads to oxidative stress that causes an imbalance in the redox system. Mycoremediation approaches can potentially reduce the As level near the contaminated sites and are procuring popularity as being eco-friendly and cost-effective. Many fungi have specific metal-binding metallothionein proteins, which are used for immobilizing the As concentration from the soil, thereby removing the accumulated As in crops. Some fungi also have other mechanisms to reduce the As contamination, such as biosynthesis of glutathione, cell surface precipitation, bioaugmentation, biostimulation, biosorption, bioaccumulation, biovolatilization, methylation, and chelation of As. Arsenic-resistant fungi and recombinant yeast have a significant potential for better elimination of As from contaminated areas. This review discusses the relationship between As exposure, oxidative stress, and signaling pathways. We also explain how to overcome the detrimental effects of As contamination through mycoremediation, unraveling the mechanism of As-induced toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA