Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microbiology (Reading) ; 162(9): 1708-1714, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27460095

RESUMO

The present study investigated plant extracts for their anti-quorum-sensing (QS) potential to inhibit the biofilm formation in Cronobacter sakazakii strains. The bioassay based on loss of pigment production by Chromobacterium violaceum 026 and Agrobacterium tumefaciens NTL4(pZLR4) was used for initial screening of the extracts. Further, the effect of extracts on the inhibition of QS-mediated biofilm in C. sakazakii isolates was evaluated using standard crystal violet assay. The effect on biofilm texture was studied using SYTO9 staining and light and scanning electron microscopy. Among the tested extracts, Piper nigrum and Cinnamomum verum at 100 ppm resulted in 78 and 68 % reduction in the production of violacein as well as blue-green colour in both biosensor strains. A higher inhibitory activity (>50 %) on biofilm formation in C. sakazakii was observed for Pip. nigrum and Cin. verum, whereas the other extracts possessed moderate (25-50 %) and minimal (<25 %) inhibitory activities. Further, the fluorescent and scanning electron microscopic images indicated a major disruption in the architecture of biofilms of tested strains by Pip. nigrum. This study points to the possibility of using Pip. nigrum and Cin. verum as inhibitor of QS-mediated biofilm formation by C. sakazakii that could be further explored for novel bioactive molecules to limit the emerging infections of C. sakazakii.


Assuntos
Biofilmes/efeitos dos fármacos , Cronobacter sakazakii/efeitos dos fármacos , Extratos Vegetais/farmacologia , Plantas/química , Percepção de Quorum/efeitos dos fármacos , Cronobacter sakazakii/fisiologia , Avaliação Pré-Clínica de Medicamentos
2.
Mol Biotechnol ; 65(1): 1-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35939207

RESUMO

The ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) isolates both from the clinical settings and food products are demonstrated to gain resistance to multiple antimicrobials. Therefore, the ESKAPE pathogens pose a serious threat to public health, which warrants specific attention to developing alternative novel therapeutics. The clustered regularly interspaced short palindromic repeats associated (CRISPR-Cas) system is one of the novel methods for managing antibiotic-resistant strains. Specific Cas nucleases can be programmed against bacterial genomic sequences to decrease bacterial resistance to antibiotics. Moreover, a few CRISPR-Cas nucleases have the ability to the sequence-specific killing of bacterial strains. However, some pathogens acquire antibiotic resistance due to the presence of the CRISPR-Cas system. In brief, there is a wide range of functional diversity of CRISPR-Cas systems in bacterial pathogens. Hence, to be an effective and safe infection treatment strategy, a comprehensive understanding of the role of CRISPR-Cas systems in modulating antibiotic resistance in ESKAPE pathogens is essential. The present review summarizes all the mechanisms by which CRISPR confers and prevents antibiotic resistance in ESKAPE. The review also emphasizes the relationship between CRISPR-Cas systems, biofilm formation, and antibiotic resistance in ESKAPE.


Assuntos
Bactérias , Infecções Bacterianas , Humanos , Bactérias/genética , Klebsiella pneumoniae/genética , Genoma Bacteriano , Infecções Bacterianas/genética , Resistência Microbiana a Medicamentos , Antibacterianos/farmacologia
3.
Environ Pollut ; 320: 121085, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642175

RESUMO

A growing body of evidence indicates that exposure to air pollution affects cognitive performance; however, few studies have assessed this in the context of repeated measures within a large group of individuals or in a population with a large age range. In this study, we evaluated the associations between long-term exposure to fine particulate matter (PM2.5) and ozone (O3) in large cohort of adults aged 18-90 years. The study cohort included 29,091 Lumosity users in the contiguous US who completed 20 repetitions of the Lost in Migration game between 2017 and 2018. Game scores reflect the ability to filter information and avoid distracting information. Long-term air pollution data included ambient PM2.5 and O3 averaged for the 365-day period before each gameplay date. Generalized linear models were used to examine the associations between long-term PM2.5 and O3 and game score percentile. Co-pollutant models were adjusted for meteorology, time trend, age, gender, device, education, local socioeconomic factors, and urbanicity. Results represent the change in attention game score percentile per 1 µg/m3 increase in PM2.5 or 0.01 ppm increase in O3. In the entire cohort, a -0.10 (95% CI: -0.16, -0.04) change in score percentile was associated with PM2.5, while no significant association was observed with O3. Modification of these associations by age was observed for both PM2.5 and O3, with stronger associations observed in younger users. In users aged 18-29, a -0.25 (-0.45, -0.05) change in score percentile was associated with PM2.5, while no associations were observed in other age groups. With O3, there was a -2.92 (-4.63, -1.19) and -2.81 (-4.29, -1.25) change in score percentile for users aged 18-29 and 30-39, respectively. We observed that elevated long-term PM2.5 and O3 were associated with decreased focus scores in young adults, but follow-up research is necessary to further illuminate these associations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Adulto Jovem , Poluentes Atmosféricos/análise , Estudos Retrospectivos , Poluição do Ar/análise , Material Particulado/análise , Ozônio/análise , Cognição , Exposição Ambiental/análise
4.
Mol Biotechnol ; 64(3): 245-251, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34643870

RESUMO

Plants, fungi, and bacteria synthesize a wide range of secondary metabolites that exhibit diverse biological activities. These bioactives, due to their potential benefits in research and therapeutics, have gained immense industrial importance. There is a need to synthesize these bioactives at significantly higher concentrations using cost-effective measures to be economically viable. However, the broader study of industrially important secondary metabolites has been hindered, thus, far due to a shortage of reliable, comparatively easy, and highly effective gene manipulation techniques. With the advent of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas), there is a revolution in the field of genetic engineering. CRISPR/Cas system, due to its simplicity and ease of use. This has widened its application in plant breeding, strain improvement, and engineering the metabolic pathways involved in the biochemical synthesis of industrially valuable bioactive. This review briefly introduces the CRISPR/Cas9 system and summarizes the applications of CRISPR/Cas9-mediated editing tools for the production of plant and fungal-derived bioactives.


Assuntos
Fatores Biológicos/metabolismo , Fungos/genética , Edição de Genes/métodos , Plantas/genética , Sistemas CRISPR-Cas , Fungos/metabolismo , Melhoramento Vegetal , Plantas/metabolismo , Metabolismo Secundário
5.
Pathog Glob Health ; 115(6): 339-356, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33851566

RESUMO

The ESKAPE pathogens (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) are identified to be multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan drug-resistant (PDR); thereby, imposing severe challenges in the treatment of associated infections. ESKAPE pathogens colonize on various biotic and abiotic surfaces; biofilms formed by these pathogens are a potential source for food contamination. Moreover, biofilms play a pivotal role in the development of antimicrobial-resistant (AMR) strains. Hence, the frequent isolation of antimicrobial-resistant ESKAPE pathogens from food products across the globe imposes a threat to public health. A comprehensive understanding of the adhesion signaling involved in the polymicrobial and single-species biofilm will assist in developing alternative preservation techniques and novel therapeutic strategies to combat ESKAPE pathogens. The review provides a comprehensive overview of the signaling mechanisms that prevail in the ESKAPE pathogens for adhesion to abiotic and biotic surfaces and molecular mechanisms associated with poly-microbial biofilm-assisted AMR in ESKAPE.


Assuntos
Acinetobacter baumannii , Antibacterianos , Antibacterianos/farmacologia , Biofilmes , Farmacorresistência Bacteriana , Pseudomonas aeruginosa
6.
Expert Rev Anti Infect Ther ; 19(7): 845-865, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33261536

RESUMO

INTRODUCTION: The quest to combat bacterial infections has dreaded humankind for centuries. Infections involving ESKAPE (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) impose therapeutic challenges due to the emergence of antimicrobial drug resistance. Recently, investigations with bacteriophages have led to the development of novel strategies against ESKAPE infections. Also, bacteriophages have been demonstrated to be instrumental in the dissemination of virulence markers in ESKAPE pathogens. AREAS COVERED: The review highlights the potential of bacteriophage in and against the pathogenicity of antibiotic-resistant ESKAPE pathogens. The review also emphasizes the challenges of employing bacteriophage in treating ESKAPE pathogens and the knowledge gap in the bacteriophage mediated antibiotic resistance and pathogenicity in ESKAPE infections. EXPERT OPINION: Bacteriophage infection can kill the host bacteria but in survivors can transfer genes that contribute toward the survival of the pathogens in the host and resistance toward multiple antimicrobials. The knowledge on the dual role of bacteriophages in the treatment and pathogenicity will assist in the prediction and development of novel therapeutics targeting antimicrobial-resistant ESKAPE. Therefore, extensive investigations on the efficacy of synthetic bacteriophage, bacteriophage cocktails, and bacteriophage in combination with antibiotics are needed to develop effective therapeutics against ESKAPE infections.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos , Terapia por Fagos/métodos , Animais , Antibacterianos/administração & dosagem , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Terapia Combinada , Farmacorresistência Bacteriana Múltipla , Humanos , Virulência
7.
Mol Oral Microbiol ; 36(1): 1-11, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32979241

RESUMO

Polyamines are positively charged hydrocarbons that are essential for the growth and cellular maintenance in prokaryotes and eukaryotes. Polyamines have been demonstrated to play a role in bacterial pathogenicity and biofilm formation. However, the role of extracellular polyamines as a signaling molecule in the regulation of virulence is not investigated in detail. The bacterial pathogens residing in the respiratory tract remain asymptomatic for an extended period; however, the factors that lead to symptomatic behavior are poorly understood. Further investigation to understand the relation between the host-secreted factors and virulence of pathogenic bacteria in the respiratory tract may provide insights into the pathogenesis of respiratory tract infections. Polyamines produced within the bacterial cell are generally sequestered. Therefore, the pool of extracellular polyamines formed by secretion of the commensals and the host may be one of the signaling molecules that might contribute toward the alterations in the expression of virulence factors in bacterial pathogens. Besides, convergent mechanisms of polyamine biosynthesis do exist across the border of species and genus level. Also, several novel polyamine transporters in the host and bacteria remain yet to be identified. The review focuses on the role of polyamines in the expression of virulence phenotypes and biofilm formation of the respiratory tract pathogens.


Assuntos
Bactérias , Poliaminas , Sistema Respiratório , Virulência , Fatores de Virulência
8.
ACS Appl Bio Mater ; 2(2): 675-684, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35016273

RESUMO

Surface coatings for biomedical implants have been used to prevent premature failure of the implant due to bacterial biofilm formation and foreign body reaction. Delamination, cracking, crazing, etc. are frequent problems associated with coatings when implants are subjected to mechanical deformation either during surgical handling or during use. We demonstrate here a novel process that results in the formation of a coating that is stable under mechanical stresses in tensile, torsion, and bending modes. The coating process involves a combination of two conventional coating processes, namely, dip coating and electrospinning. Polydimethylsiloxane was selected as the substrate owing to its wide use in biomedical implants. Silk fibroin, a natural biocompatible protein polymer obtained from the Bombyx mori silkworm, was used for demonstrating the process of coating. The coating was also further functionalized using a green biomolecule , glycomonoterpene prepared using citronellal and glucose. These functional compounds are being touted as the next-generation antibiofilm molecules on account of quorum sensing inhibitory activity. We have demonstrated that the quorum-quenching activity of the biomolecule is retained during the processing steps and that the coatings exhibited an excellent antibiofilm activity against common infection-causing bacteria, Pseudomonas aeruginosa and Staphylococcus epidermidis. These silk fibroin-glycomonoterpene coatings can be used for implants in biomedical applications such as breast implants and catheter tubings.

9.
Appl Biochem Biotechnol ; 181(4): 1533-1548, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27854038

RESUMO

The acquisition of multidrug resistance in bacteria has become a bigger threat of late, mainly due to the bacterial signaling phenomenon, quorum sensing (QS). QS, among a population of bacteria, initiates the formation of biofilms and offers myriad advantages to bacteria. Burgeoning antibiotic resistance in biofilm-producing bacteria has motivated efforts toward finding new alternatives to these traditional antimicrobials. In the present study, we report the increased solubility and additional quorum quenching as well as biofilm disruption activity of glyco-derivatives of monoterpenes (citral and citronellal). Glycomonoterpenes of citral and citronellal were synthesized via conjugation of the monoterpenes with glucose by the non-pathogenic yeast Candida bombicola (ATCC 22214). Structural elucidation of newly synthesized glycomonoterpenes showed that one synthesized using citronellal contains three major lactonic forms with molecular weight 492.43, 473.47, and 330.39 Da whereas the one produced using citral has an acidic form with molecular weight 389.33 and 346.23 Da. The glycomonoterpenes were able to individually inhibit QS, mediated through various medium-chain and long-chain N-acyl homoserine lactones (AHLs). These new compounds are interesting additions to the known range of quorum sensing inhibitors (QSIs) and could be further explored for potential clinical applications.


Assuntos
Bactérias/citologia , Bactérias/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Terpenos/metabolismo , Terpenos/farmacologia , Bactérias/patogenicidade , Biofilmes/efeitos dos fármacos , Candida/metabolismo , Terpenos/química , Virulência/efeitos dos fármacos
10.
Virulence ; 8(3): 275-281, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-27715454

RESUMO

The present study investigates the role of quorum sensing (QS) molecules expressed by C. sakazakii in biofilm formation and extracellular polysaccharide expression. The QS signaling was detected using Chromobacterium violaceum 026 and Agrobacterium tumefaciens NTL4(pZLR4) based bioassay. Long chain N-acyl-homoserine lactones (AHLs) with C6- C18 chain length were identified using High Performance Liquid Chromatography and Liquid Chromatography-High Resolution Mass Spectrometry. A higher Specific Biofilm Formation (SBF) index (p < 0.05) with the presence of genes associated with cellulose biosynthesis (bcsA, bcsC and bcsG) was observed in the strains. AHLs and their mechanisms can serve as novel targets for developing technologies to eradicate and prevent biofilm formation by C. sakazakii.


Assuntos
Acil-Butirolactonas/metabolismo , Biofilmes/crescimento & desenvolvimento , Cronobacter sakazakii/fisiologia , Percepção de Quorum , Agrobacterium tumefaciens/efeitos dos fármacos , Agrobacterium tumefaciens/fisiologia , Bioensaio , Cromatografia Líquida de Alta Pressão , Chromobacterium/efeitos dos fármacos , Chromobacterium/fisiologia , Cronobacter sakazakii/metabolismo , Espectrometria de Massas , Polissacarídeos Bacterianos/metabolismo
11.
Folia Microbiol (Praha) ; 61(1): 85-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26126789

RESUMO

Sophorolipids are surface active glycolipids consisting of a hydrophilic sophorose unit and a hydrophobic portion composed of a fatty acid tail. Crude sophorolipid sample contains both acidic and lactonic forms of sophorolipid with different degrees of acetylation and varying lengths of the fatty acid chains depending on the substrates used in the production process. Carboxylic end in the acidic form of the fatty acid is free, whereas in the lactonic form, it is internally esterified. Sophorolipids show different physicochemical properties with wide range of applications for each structural compound. Lactonic form of sophorolipids shows surface tension reducing ability and biological activity, whereas the acidic form possesses better foam forming ability and higher solubility. Presence of acetyl groups gives hydrophilic nature to the sophorolipids which promotes its antiviral and cytokine-stimulating properties. The aim of this review is to explore and suggest the plausibility of sophorolipids as therapeutic and prophylactic agents for the treatment of viral diseases.


Assuntos
Antivirais/farmacologia , Antivirais/uso terapêutico , Glicolipídeos/farmacologia , Glicolipídeos/uso terapêutico , Viroses/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA