Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1865(2): 392-405, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29175377

RESUMO

The failure of chemotherapeutic drugs in treatment of various cancers is attributed to the acquisition of drug resistance. However, the migration mechanisms of drug-resistant cancer cells remain incompletely understood. Here we address this question from a biophysical perspective by mapping the phenotypic alterations in ovarian cancer cells (OCCs) resistant to cisplatin and paclitaxel. We show that cisplatin-resistant (CisR), paclitaxel-resistant (PacR) and dual drug-resistant (i.e., resistant to both drugs) OCCs are more contractile and softer than drug-sensitive cells. Protease inhibition suppresses invasion of CisR cells but not of PacR cells, indicative of a protease-dependent mode of migration in CisR cells and a protease-independent mode of migration in PacR. Despite these differences, actomyosin contractility, mediated by the RhoA-ROCK2-Myosin II signaling pathway, regulates both modes of migration. Confined migration experiments establish the role of myosin IIA and IIB in mediating nuclear translocation and regulation of proteolytic activity. Collectively, our results highlight the importance of myosin II as a potential therapeutic target for treatment of drug-resistant ovarian cancer cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Miosina Tipo II/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Ovarianas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Miosina Tipo II/genética , Proteínas de Neoplasias/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA