Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 217: 114729, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36343718

RESUMO

The interaction between water vapor and natural/anthropogenic airborne particles deposits a massive amount of trace elements in the ecosystem. As the principal source region of the Indian monsoon originated from the Bay of Bengal, atmospheric trace elements in Bangladesh have impacted atmospheric wet deposition along the pathway, even reaching the headwaters in the Asian water tower. However, no study reports the atmospheric wet deposition of trace elements at the spatiotemporal scale. Thus, this study investigated the concentration, sources, and deposition of eighteen trace elements (Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Rb, Sr, Mo, Cd, Sn, Sb, Ba, and Pb) from 232 precipitation samples at four sites in Bangladesh. Results showed that the VWM concentrations of the eighteen measured trace elements ranged from 0.03 to 535.6 µg L-1. Zn, Fe, and Al were the principal elements of the atmosphere at four sites with mean values of 207.9 ± 227.8, 18.2 ± 9.3, and 16.3 ± 6.8 µg L-1, respectively. Besides, the eighteen trace elements showed significant variation in spatial scale with distinct seasonality. Enrichment factors of Zn, Sb, and Cd indicated serious anthropogenic influences. The major sources of trace elements were fossil fuel combustion, brick kilns, crustal dust, fugitive Pb, metal smelters, and battery recycling. Both the concentration and precipitation amount played a pivotal role in the deposition. Most of the air masses during the monsoon season came from marine sources passing over southern India and Sri Lanka. Meanwhile, the air masses during the non-monsoon season were from West Asia and the northwestern Indian subcontinent. The air masses are transported over a long range and deposit massive amounts of particulate matter in the Third Pole Himalayan region. This first-hand work on spatiotemporal variation provides a reference dataset for future targeting of the scientific community and policymakers for the development of strategies and action plans.


Assuntos
Poluentes Atmosféricos , Oligoelementos , Oligoelementos/análise , Poluentes Atmosféricos/análise , Bangladesh , Ecossistema , Cádmio , Chumbo , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 949: 175147, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39084375

RESUMO

Water-soluble ions, inorganic nitrogen, and stable isotopes in precipitation were assessed from the southern (Koshi Tappu and Khandbari) and northern slopes (Lhasa and SET) of the Himalayas to understand the sources, chemistry of regional precipitation, and climatic processes. Water soluble ions showed distinct seasonal variation, with higher concentrations in the non-monsoon. The concentration of ionic species was highest in Koshi Tappu, followed by Lhasa, SET, and Khandbari. The sources were from the terrigenous (Ca2+, HCO3-), marine (Na+ and Cl-), anthropogenic (SO42-, NO3-, and NH4+), terrigenous and marine (Mg2+), and biomass-burning (K+). The southern slope, relative to the northern, was more prone to anthropogenic emissions with higher deposition. Among all sites, inorganic nitrogen deposition at Koshi Tappu was higher than the threshold value (10 kg ha-1 y-1). The isotopic composition during the study period was higher in non-monsoon, started declining from June, and depleted in July and August compared to other months, i.e., the monsoon mature phase, along the south-to-north transect. The diminished value of stable isotopes in precipitation with increasing altitude underlines the evidence of the orographic effect in isotopic composition. Our study delineated that the higher/lower d-excess value increased with altitude on the southern/northern slope of the Himalayas. The backward trajectory analysis and the National Centers for Environmental Prediction's Final (NCEP FNL) datasets identified that most of the trajectories arrived from warm and humid low-latitude regions during monsoon and westerlies in non-monsoon. Thus, the chemical characteristics and stable isotopic composition of precipitation differed on the southern and northern slopes of the Himalayas by orographic effect and various sources. This study provides new insights into the atmospheric environment and climatic control of stable isotopes in the Himalayan Tibetan Plateau and facilitates monitoring of transboundary air pollution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA