Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Rapid Commun Mass Spectrom ; 38(6): e9678, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38356090

RESUMO

RATIONALE: SLAP is one of the two calibration materials for the isotopic water scale. By consensus the established δ18 O value is -55.5‰, although several expert laboratories measure significantly more negative δ18 OSLAP values. The real δ18 OSLAP value as such does not influence the isotopic water scale; however, knowledge of the size of isotopic scale contraction in stable isotope measurements is vital for second-order isotopes. This study describes the quantification of δ18 OSLAP with respect to δ18 OVSMOW . METHODS: SLAP-like water was quantitatively mixed with highly 18 O-enriched water to mimic VSMOW. The 18 O concentration was determined using an electron ionization quadrupole mass spectrometer. The isotopic composition of the SLAP-like and VSMOW-like waters was measured using an optical spectrometer, alongside original VSMOW and SLAP. RESULTS: This study resulted in a much more negative δ18 O value for SLAP than expected. The averaged outcome of seven independent experiments is δ18 OSLAP  = -56.33 ± 0.03‰. There is a large discrepancy between the actual isotopic measurements of even the most carefully operating isotope laboratories and the true δ18 O value. CONCLUSIONS: Although this finding as such does not influence the use of the VSMOW-SLAP scale, it raises the intriguing question of what we actually measure with our instruments and why even a fully corrected measurement can be so far off. Our result has consequences for issues like the transfer of δ18 O from and to the VPDB scale, various fractionation factors, and Δ17 O. The absolute 18 O abundance for SLAP was calculated as (1887.98 ± 0.43) × 10-6 based on the absolute 18 O abundance of VSMOW and the presented δ18 OSLAP in this paper.

2.
Rapid Commun Mass Spectrom ; 38(16): e9773, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872591

RESUMO

RATIONALE: The isotope ratio for the internationally agreed but virtual zero-point of the carbon isotope-delta scale, Vienna Peedee belemnite (VPDB), plays a critical role in linking carbon isotope delta values to the SI. It is also a quantity used for various data processing procedures including '17O correction', clumped isotope analysis and conversion of carbon isotope delta values into other expressions of isotopic composition. A value for RVPDB(13C/12C) with small uncertainty is therefore desirable to facilitate these procedures. METHODS: The value of RVPDB(13C/12C) was determined by errors-in-variables regression of isotope delta values traceable to VPDB measured by isotope ratio mass spectrometry against isotope ratios traceable to the SI by use of gravimetric mixtures of 12C- and 13C-enriched d-glucose measured by multicollector inductively coupled plasma mass spectrometry. RESULTS: A value of RVPDB(13C/12C) = 0.0111105 ± 0.0000042 (expanded uncertainty, k = 2) was obtained. CONCLUSIONS: The new value for RVPDB(13C/12C) agrees very well with the consensus values calculated from previous measurement results proposed by Kaiser and by ourselves, as well as recent determinations independent of mass spectrometry. The expanded uncertainty of 0.4‰ when expressed as an isotope delta value is a tenfold improvement over the previous best measurement of the isotopic composition of carbon.

3.
Environ Sci Technol ; 57(38): 14269-14279, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37698874

RESUMO

Methylsiloxanes have gained growing attention as emerging pollutants due to their toxicity to organisms. As man-made chemicals with no natural source, most research to date has focused on volatile methylsiloxanes from personal care or household products and industrial processes. Here, we show that methylsiloxanes can be found in primary aerosol particles emitted by vehicles based on aerosol samples collected in two tunnels in São Paulo, Brazil. The aerosol samples were analyzed with thermal desorption-proton transfer reaction-mass spectrometry (TD-PTR-MS), and methylsiloxanes were identified and quantified in the mass spectra based on the natural abundance of silicon isotopes. Various methylsiloxanes and derivatives were found in aerosol particles from both tunnels. The concentrations of methylsiloxanes and derivatives ranged 37.7-377 ng m-3, and the relative fractions in organic aerosols were 0.78-1.9%. The concentrations of methylsiloxanes exhibited a significant correlation with both unburned lubricating oils and organic aerosol mass. The emission factors of methylsiloxanes averaged 1.16 ± 0.59 mg kg-1 of burned fuel for light-duty vehicles and 1.53 ± 0.37 mg kg-1 for heavy-duty vehicles. Global annual emissions of methylsiloxanes in vehicle-emitted aerosols were estimated to range from 0.0035 to 0.0060 Tg, underscoring the significant yet largely unknown potential for health and climate impacts.


Assuntos
Poluentes Ambientais , Emissões de Veículos , Humanos , Brasil , Aerossóis , Clima
4.
Mol Divers ; 26(4): 1933-1955, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34554395

RESUMO

Breast and stomach cancer is reported as a leading cause for human mortality across the world. The overexpression of receptor tyrosine kinase (RTK) proteins, namely the human epidermal growth factor receptor2 (HER2) and the vascular endothelial growth factor receptor2 (VEGFR2), is reported to be responsible for development and metastasis of breast and stomach cancer. Although several synthetic tyrosine kinase inhibitors (TKIs) as drug candidates targeting RTK-HER2 and VEGFR2 are currently available in the market, these are expensive with the reported side effects. This confers an opportunity for development of alternative novel tyrosine kinase inhibitors (TKIs) for RTK-HER2 and VEGFR2 receptors from the botanical sources. In the present study, we characterized 47 bioactive phytocompounds from the methanol extracts of the rhizomes of Asiatic traditional medicinal herbs-Panax bipinnatifidus and Panax pseudoginseng, of Indian Himalayan landraces using HPLC, GC-MS and high-sensitivity LC-MS tools. We performed molecular docking and molecular dynamics simulation analysis using Schrödinger suite 2020-3 to confirm the TKI phytocompounds showing the best binding affinity towards RTK-HER2 and VEGFR2 receptors. The results of molecular docking studies confirmed that the phytocompound (ligand) luteolin 7-O-glucoside (IHP15) showed the highest binding affinity towards receptor HER2 (PDB ID: 3PP0) with docking score and Glide g score (G-Score) of - 13.272, while chlorogenic acid (IHP12) showed the highest binding affinity towards receptor VEGFR2 (PDB ID: 4AGC) with docking score and Glide g score (G-Score) of - 10.673. Molecular dynamics (MD) simulation analysis carried out for 100 ns has confirmed strong binding interaction between the ligand and receptor complex [luteolin 7-O-glucoside (IHP15) and HER2 (PDB ID: 3PP0)] and is found to be stabilized within 40 to 100 ns of MD simulation, whereas ligand-receptor complex [chlorogenic acid (IPH12) and VEGFR2 (PDB ID: 4AGC)] also showed strong binding interaction and is found to be stabilized within 18-30 ns but slightly deviated during 100 ns of MD simulation. In silico ADME-Tox study using SwissADME revealed that the ligands luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) have passed majority parameters of the common drug discovery rules. The present study has confirmed luteolin 7-O-glucoside (IHP15) and chlorogenic acid (IHP12) as potential tyrosine kinase inhibitors (TKIs) which were found to inhibit RTKs-HER2 and VEGFR2 receptor proteins, and thus paving the way for development of alternative potential TKIs (drug molecules) for treatment of HER2- and VEGFR2-positive breast and stomach cancer.


Assuntos
Panax , Inibidores de Proteínas Quinases , Ácido Clorogênico , Glucosídeos , Humanos , Ligantes , Luteolina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Panax/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
5.
Rapid Commun Mass Spectrom ; 33(3): 239-251, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30378194

RESUMO

RATIONALE: Molecular hydrogen (H2 ) is an important gas for atmospheric chemistry, and an indirect greenhouse gas due to its reaction with OH. The isotopic composition of H2 (δD) has been used to investigate its atmospheric budget; here we add a new observable, the clumped isotopic signature ΔDD, to the tools that can be used to study the global cycle of H2 . METHODS: A method for determining ΔDD in H2 was developed using the high-resolution MAT 253-Ultra isotope ratio mass spectrometer (Thermo Fisher). The HH, HD and DD abundances are quantified at medium resolution (M/ΔM ≈ 6000), which is sufficient for HD+ and DD+ to be distinguished from H3 + and H2 D+ , respectively. The method involves sequential measurement of isotopologues, and DD is measured using an ion counter. For verification, catalytic ΔDD equilibration experiments were performed at temperatures of up to 850°C. RESULTS: The typical precision obtained for ΔDD is 2-6‰, close to the theoretical counting statistics limit, and adequate for detecting the expected natural variations. Compatibility and medium-term reproducibility are consistent with the precision values. The method was validated using temperature equilibration experiments, which showed a dependence of ΔDD on temperature as expected form theoretical calculations. CONCLUSIONS: We have established a method for determining ΔDD in H2 at natural isotopic abundances, with a precision that is adequate for observing the expected variations in atmospheric and other natural H2 . This method opens the road to new research on the natural H2 cycle.

6.
Rapid Commun Mass Spectrom ; 33(17): 1363-1380, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31063233

RESUMO

RATIONALE: Determination of δ17 O values directly from CO2 with traditional gas source isotope ratio mass spectrometry is not possible due to isobaric interference of 13 C16 O16 O on 12 C17 O16 O. The methods developed so far use either chemical conversion or isotope equilibration to determine the δ17 O value of CO2 . In addition, δ13 C measurements require correction for the interference from 12 C17 O16 O on 13 C16 O16 O since it is not possible to resolve the two isotopologues. METHODS: We present a technique to determine the δ17 O, δ18 O and δ13 C values of CO2 from the fragment ions that are formed upon electron ionization in the ion source of the Thermo Scientific 253 Ultra high-resolution isotope ratio mass spectrometer (hereafter 253 Ultra). The new technique is compared with the CO2 -O2 exchange method and the 17 O-correction algorithm for δ17 O and δ13 C values, respectively. RESULTS: The scale contractions for δ13 C and δ18 O values are slightly larger for fragment ion measurements than for molecular ion measurements. The δ17 O and Δ17 O values of CO2 can be measured on the 17 O+ fragment with an internal error that is a factor 1-2 above the counting statistics limit. The ultimate precision depends on the signal intensity and on the total time that the 17 O+ beam is monitored; a precision of 14 ppm (parts per million) (standard error of the mean) was achieved in 20 hours at the University of Göttingen. The Δ17 O measurements with the O-fragment method agree with the CO2 -O2 exchange method over a range of Δ17 O values of -0.3 to +0.7‰. CONCLUSIONS: Isotope measurements on atom fragment ions of CO2 can be used as an alternative method to determine the carbon and oxygen isotopic composition of CO2 without chemical processing or corrections for mass interferences.

7.
Anal Chem ; 87(17): 9025-32, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26252648

RESUMO

IntraCavity OptoGalvanic Spectroscopy as a radiocarbon detection technique was first reported by the Murnick group at Rutgers University, Newark, NJ, in 2008. This technique for radiocarbon detection was presented with tremendous potentials for applications in various fields of research. Significantly cheaper, this technique was portrayed as a possible complementary technique to the more expensive and complex accelerator mass spectrometry. Several groups around the world started developing this technique for various radiocarbon related applications. The IntraCavity OptoGalvanic Spectroscopy setup at the University of Groningen was constructed in 2012 in close collaboration with the Murnick group for exploring possible applications in the fields of radiocarbon dating and atmospheric monitoring. In this paper we describe a systematic evaluation of the IntraCavity OptoGalvanic Spectroscopy setup at Groningen for radiocarbon detection. Since the IntraCavity OptoGalvanic Spectroscopy setup was strictly planned for dating and atmospheric monitoring purposes, all the initial experiments were performed with CO2 samples containing contemporary levels and highly depleted levels of radiocarbon. Because of recurring failures in differentiating the two CO2 samples, with the radiocarbon concentration 3 orders of magnitude apart, CO2 samples containing elevated levels of radiocarbon were prepared in-house and experimented with. All results obtained thus far at Groningen are in sharp contrast to the results published by the Murnick group and rather support the results put forward by the Salehpour group at Uppsala University. From our extensive test work, we must conclude that the method is unsuited for ambient level radiocarbon measurements, and even highly enriched CO2 samples yield insignificant signal.

8.
J Biomol Struct Dyn ; 40(15): 6857-6867, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33625319

RESUMO

Human epidermal growth factor receptor2 (HER2) and Vascular endothelial growth factor receptor2 (VEGFR2) - a tyrosine kinase receptors play a key role in breast and stomach cancers. The overexpression of HER2 and VEGFR2 genes increases the number of HER2 and VEGFR2 in the cell which initiates breast and stomach cancer respectively. The phytochemicals from traditional medicinal herb Houttuynia cordata Thunb. are reported to possess anti-inflammatory and anti-cancer potential. However, isolation of phytochemicals from this herb is fraught with uncertainly and time-consuming. Here, a molecular docking approach provides probable binding affinities between the receptors and phytochemicals (ligands) which initiate the first step of anticancer drug discovery and development. In the present study, In-silico docking approaches were used to identify the top-hit phytochemicals from H. cordata as potential inhibitors for overexpressed HER2 (breast) and VEGFR2 (stomach) cancer genes. A total of 100 biologically active phytochemicals from H. cordata were screened and docked against the ligand-binding pocket of HER2 and VEGFR2 kinase domains. Docking results revealed only a few phytochemicals (molecules) which appropriately fit into the ligand-binding pocket with higher binding affinity than the natural ATP ligand. A competitive docking was used to ascertain the top-hit phytochemicals that bind perfectly to the ATP ligand-binding pocket. Among the top-hit phytochemicals docked from H. cordata, the ß-sitosterol and Quercetin showed highest binding affinity towards HER2 and VEGFR2 receptors using both hydrogen and hydrophobic interactions. This study confirmed ß-sitosterol and Quercetin as potential drug candidates against breast and stomach cancer.Communicated by Ramaswamy H. Sarma.


Assuntos
Houttuynia , Neoplasias Gástricas , Trifosfato de Adenosina , Genes Neoplásicos , Houttuynia/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Compostos Fitoquímicos/farmacologia , Quercetina , Receptor ErbB-2 , Fator A de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular
9.
Sci Total Environ ; 804: 150031, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34509852

RESUMO

We describe and thoroughly evaluate a method for 13C analysis in different fractions of carbonaceous aerosols, especially elemental carbon (EC). This method combines a Sunset thermal-optical analyzer and an isotope ratio mass spectrometer (IRMS) via a custom-built automated separation, purification, and injection system. Organic carbon (OC), EC, and other specific fractions from aerosol filter samples can be separated and analyzed automatically for 13C based on thermal-optical protocols (EUSAAR_2 in this study) at sub-µgC levels. The main challenges in isolating EC for 13C analysis are the possible artifacts during OC/EC separation, including the premature loss of EC and the formation of pyrolyzed OC (pOC) that is difficult to separate from EC. Since those artifacts can be accompanied with isotope fractionation, their influence on the stable isotopic composition of EC was comprehensively investigated with various test compounds. The results show that the thermal-optical method is relatively successful in OC/EC separation for 13C analysis. The method was further tested on real aerosols samples. For biomass-burning source samples, (partial) inclusion of pOC into EC has negligible influence on the 13C signature of EC. However, for ambient samples, the influence of pOC on the 13C signature of EC can be significant, if it is not well separated from EC, which is true for many current methods for measuring 13C on EC. A case study in Xi'an, China, where pOC is enriched in 13C compared to EC, shows that this can lead to an overestimate of coal and an underestimate of traffic emissions in isotope-based source apportionment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental , Material Particulado/análise , Estações do Ano
11.
J Ethnopharmacol ; 270: 113842, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33460752

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional medicinal plants have gained attention as a potential therapeutic agent to combat cancer and inflammation. Diosgenin rich fresh extracts of Paris polyphylla rhizome from Indian Himalaya is traditionally used as wound healing, anti-bleeding, anti-inflammatory and anti-cancer agent by the folk healers. AIM OF THE STUDY: Present study was aimed to prepare two types of extracts from Paris polyphylla rhizome of Indian Himalayan landraces - 1. ethanolic extract of Paris polyphylla rhizome (EEPPR) and 2. Diosgenin enriched Paris polyphylla rhizome extract (DPPE), quantification of diosgenin content, and to evaluate their in vitro anti-oxidant, in vivo anti-inflammatory and in vitro cytotoxicity and anti-cancer activities of the DPPE. MATERIALS AND METHODS: Diosgenin content of EEPPR was quantified through GC-MS while diosgenin content of DPPE was quantified through HPTLC, and the diosgenin yield from EEPPR and DPPE were compared. In vitro antioxidant activities of DPPE were performed using DPPH, NOD, RP and SOD assay while in vivo anti-inflammatory activity of DPPE were evaluated in dextran induced hind paw edema in rats. In vitro cytotoxicity and anti-cancer activities of DPPE were evaluated in human breast cancer cell lines (MCF-7, MDA-MB-231), cervical cancer cell lines (HeLa) and Hep-2 cell lines. RESULTS: EEPPR obtained through cold extraction method using 70% ethanol showed maximum diosgenin content of 17.90% quantified through GC-MS while similar compounds pennogenin (3.29%), 7ß-Dehydrodiosgenin (1.90%), 7-Ketodiosgenin acetate (1.14%), and 7 ß-hydroxydiosgenin (0.55%) were detected in low concentration, and thus confirmed diosgenin as major and lead phytochemical. However, DPPE obtained through both cold and repeated hot extraction with the same solvent (70% ethanol) showed diosgenin content of 60.29% which is significantly higher (p < 0.001) than the diosgenin content in EEPPR. DPPE demonstrated significant in vitro antioxidant activities by dose-dependently quenched (p < 0.001) SOD free radicals by 76.66%, followed by DPPH (71.43%), NOD (67.35%), and RP (63.74%) at a max concentration of 2 µg/µl of ascorbic acid and test drugs with remarkable IC50 values (p < 0.01). Further, DPPE also showed potent anti-inflammatory activities by dose-dependently suppressed dextran induced paw edema in rats (p < 0.01) from 2 h to 4 h. DPPE suppressed the proliferation of MCF-7, MDA-MB-231, Hep-2 and HeLa cell lines. Maximum activity was observed in MCF-7 cells. The DPPE also induced apoptosis in MCF-7 cell lines as measured by AO/PI and DAPI staining, as well as DNA laddering, cell cycle analysis and phosphatidylserine externalization assay. The growth-inhibitory effect of DPPE on MCF-7 breast cancer cells was further confirmed from the colony-formation assay. DPPE upregulated expression of Bax and downregulated Bcl-2 and survivin mRNA transcripts. CONCLUSION: DPPE obtained through both cold and repeated hot extraction using ethanol showed significantly higher content of diosgenin than the diosgenin content detected in EEPPR. However, diosgenin yield of both the extracts (EEPPR & DPPE) clearly confirmed diosgenin as major and lead phytochemical of Paris polyphylla rhizome of Indian Himalayan landraces. Further, DPPE also demonstrated potent in vitro anti-oxidative and in vivo anti-inflammatory activities and showed in vitro cytotoxicity and significant anti-cancer (apoptosis) effects in MCF-7 breast cancer cells.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Diosgenina/farmacologia , Melanthiaceae/química , Extratos Vegetais/farmacologia , Rizoma/química , Animais , Anti-Inflamatórios/uso terapêutico , Antineoplásicos Fitogênicos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dextranos/toxicidade , Diosgenina/química , Diosgenina/isolamento & purificação , Diosgenina/uso terapêutico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Humanos , Índia , Masculino , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos Wistar , Survivina/genética , Ensaio Tumoral de Célula-Tronco , Proteína X Associada a bcl-2/genética
12.
Anal Chem ; 82(15): 6695-703, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20698583

RESUMO

Peroxycarboxylic nitric anhydrides (PANs) have long been recognized as important trace gas constituents of the troposphere. Here, we describe a blue diode laser thermal dissociation cavity ring-down spectrometer for rapid and absolute measurements of total peroxyacyl nitrate (SigmaPAN) abundances at ambient concentration levels. The PANs are thermally dissociated and detected as NO2, whose mixing ratios are quantified by optical absorption at 405 nm relative to a reference channel kept at ambient temperature. The effective NO2 absorption cross-section at the diode laser emission wavelength was measured to be 6.1 x 10(-19) cm2 molecule(-1), in excellent agreement with a prediction based on a projection of a high-resolution literature absorption spectrum onto the laser line width. The performance, i.e., accuracy and precision of measurement and matrix effects, of the new 405 nm thermal dissociation cavity ring-down spectrometer was evaluated and compared to that of a 532 nm thermal dissociation cavity ring-down spectrometer using laboratory-generated air samples. The new 405 nm spectrometer was considerably more sensitive and compact than the previously constructed version. The key advantage of laser thermal dissociation cavity ring-down spectroscopy is that the measurement can be considered absolute and does not need to rely on external calibration.

13.
Rev Sci Instrum ; 80(11): 114101, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947740

RESUMO

A novel measurement technique, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), for rapid (1 s time resolution) and sensitive (precision approximately 100 parts per trillion by volume (10(-12); pptv)) quantification of total peroxy nitrate (SigmaPN) and total alkyl nitrate (SigmaAN) abundances in laboratory-generated gas mixtures is described. The organic nitrates are dissociated in a heated inlet to produce NO(2), whose concentration is monitored by pulsed-laser CRDS at 532 nm. Mixing ratios are determined by difference relative to a cold inlet reference channel. Conversion of laboratory-generated mixtures of AN in zero air (at an inlet temperature of 450 degrees C) is quantitative over a wide range of mixing ratios (0-100 parts per billion by volume (10(-9), ppbv)), as judged from simultaneous measurements of NO(y) using a commercial NO-O(3) chemiluminescence monitor. Conversion of PN is quantitative up to about 4 ppbv (at an inlet temperature of 250 degrees C); at higher concentrations, the measurements are affected by recombination reactions of the dissociation products. The results imply that TD-CRDS can be used as a generic detector of dilute mixtures of organic nitrates in air at near-ambient concentration levels in laboratory experiments. Potential applications of the TD-CRDS technique in the laboratory are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA