Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(1): 880-890, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-30078194

RESUMO

This study investigated the effects of exercise training in regulating inflammatory processes, endoplasmic reticulum stress, and apoptosis in hypothalamic neurons of obese mice. Swiss mice were distributed into three groups: Lean mice (Lean), sedentary animals fed a standard diet; obese mice (Obese), sedentary animals fed a high-fat diet (HFD); trained obese mice (T. Obese), animals fed with HFD and concurrently subjected to an endurance training protocol for 8 weeks. In the endurance training protocol, mice ran on a treadmill at 60% of peak workload for 1 hr, 5 days/week for 8 weeks. Twenty-four hours after the last exercise session, the euthanasia was performed. Western blot, quantitative real-time polymerase chain reaction, and terminal deoxynucleotide transferase biotin-dUTP nick end-labeling (TUNEL) techniques were used for the analysis of interest. The results show exercise training increased phosphorylation of leptin signaling pathway proteins (pJAK2/pSTAT3) and reduced the content of tumor necrosis factor α, toll-like receptor 4, suppressor of cytokine signaling 3, protein-tyrosine phosphatase 1B as well as the phosphorylation of IkB kinase in the hypothalamus of T. Obese animals. A reduction of macrophage activation and phosphorylation of eukaryotic initiation factor 2α, and protein kinase RNA-like endoplasmic reticulum kinase (PERK) were also observed in exercised animals. Furthermore, exercise decreased the expression of the proapoptotic protein (PARP1) and increased anti-inflammatory (IL-10) and antiapoptotic (Bcl2) proteins. Using the TUNEL technique, we observed that the exercised animals had lower DNA fragmentation. Finally, physical exercise preserved pro-opiomelanocortin messenger RNA content. In conclusion, exercise training was able to reorganize the control of the energy balance through anti-inflammatory and antiapoptotic responses in hypothalamic tissue of obese mice.


Assuntos
Treino Aeróbico , Inflamação/fisiopatologia , Obesidade/terapia , Condicionamento Físico Animal , Animais , Apoptose/genética , Dieta Hiperlipídica , Metabolismo Energético/genética , Regulação da Expressão Gênica , Humanos , Hipotálamo/metabolismo , Hipotálamo/patologia , Inflamação/terapia , Interleucina-10/genética , Camundongos , Camundongos Obesos , Neurônios/metabolismo , Neurônios/patologia , Obesidade/fisiopatologia , Poli(ADP-Ribose) Polimerase-1/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética
2.
Am J Physiol Endocrinol Metab ; 305(5): E649-59, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23880311

RESUMO

Hypothalamic inflammation is associated with insulin and leptin resistance, hyperphagia, and obesity. In this scenario, hypothalamic protein tyrosine phosphatase 1B (PTP1B) has emerged as the key phosphatase induced by inflammation that is responsible for the central insulin and leptin resistance. Here, we demonstrated that acute exercise reduced inflammation and PTP1B protein level/activity in the hypothalamus of obese rodents. Exercise disrupted the interaction between PTP1B with proteins involved in the early steps of insulin (IRß and IRS-1) and leptin (JAK2) signaling, increased the tyrosine phosphorylation of these molecules, and restored the anorexigenic effects of insulin and leptin in obese rats. Interestingly, the anti-inflammatory action and the reduction of PTP1B activity mediated by exercise occurred in an interleukin-6 (IL-6)-dependent manner because exercise failed to reduce inflammation and PTP1B protein level after the disruption of hypothalamic-specific IL-6 action in obese rats. Conversely, intracerebroventricular administration of recombinant IL-6 reproduced the effects of exercise, improving hypothalamic insulin and leptin action by reducing the inflammatory signaling and PTP1B activity in obese rats at rest. Taken together, our study reports that physical exercise restores insulin and leptin signaling, at least in part, by reducing hypothalamic PTP1B protein level through the central anti-inflammatory response.


Assuntos
Hipotálamo/metabolismo , Inflamação/metabolismo , Insulina/metabolismo , Leptina/metabolismo , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Animais , Western Blotting , Corticosterona/urina , Hipotálamo/enzimologia , Imuno-Histoquímica , Inflamação/enzimologia , Insulina/sangue , Interleucina-6/sangue , Interleucina-6/metabolismo , Leptina/sangue , Masculino , Camundongos , Camundongos Obesos , Obesidade/enzimologia , Distribuição Aleatória , Ratos , Ratos Wistar , Transdução de Sinais , Organismos Livres de Patógenos Específicos
3.
Front Cell Neurosci ; 11: 313, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29062272

RESUMO

Mitogen-activated Protein Kinase Phosphatase 3 (MKP-3) has been involved in the negative regulation of insulin signaling. The absence of MKP-3 is also associated with reduced adiposity, increased energy expenditure and improved insulin sensitivity. The MKP-3 is known as the main Erk1/2 phosphatase and FoxO1 activator, which has repercussions on the gluconeogenesis pathway and hyperglycemia in obese mice. Recently, we showed that MKP-3 overexpression decreases FoxO1 phosphorylation in the hypothalamus of lean mice. However, the hypothalamic interaction between MKP-3 and FoxO1 during obesity was not investigated yet. Here, the MKP-3 expression and the effects on food intake and energy expenditure, were investigated in high-fat diet-induced obese mice. The results indicate that obesity in mice increased the MKP-3 protein content in the hypothalamus. This hypothalamic upregulation led to an increase of food intake, adiposity, and body weight. Furthermore, the obese mice with increased MKP-3 showed an insulin signaling impairment with reduction of insulin-induced FoxO1 and Erk1/2 phosphorylation in the hypothalamus. Moreover, a bioinformatics analysis of data demonstrated that hypothalamic MKP-3 mRNA levels were positively correlated with body weight and negatively correlated to oxygen consumption (VO2) in BXD mice. Taken together, our study reports that obesity is associated with increased protein levels of hypothalamic MKP-3, which is related to the reduction of FoxO1 and Erk1/2 phosphorylation in the hypothalamus as well as to an increase in body weight and a reduction in energy expenditure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA