Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Hyperthermia ; 40(1): 2151648, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36535922

RESUMO

PURPOSE: We studied the differences between planning and treatment position, their impact on the accuracy of hyperthermia treatment planning (HTP) predictions, and the relevance of including true treatment anatomy and position in HTP based on magnetic resonance (MR) images. MATERIALS AND METHODS: All volunteers were scanned with an MR-compatible hyperthermia device, including a filled waterbolus, to replicate the treatment setup. In the planning setup, the volunteers were scanned without the device to reproduce the imaging in the current HTP. First, we used rigid registration to investigate the patient position displacements between the planning and treatment setup. Second, we performed HTP for the planning anatomy at both positions and the treatment mimicking anatomy to study the effects of positioning and anatomy on the quality of the simulated hyperthermia treatment. Treatment quality was evaluated using SAR-based parameters. RESULTS: We found an average displacement of 2 cm between planning and treatment positions. These displacements caused average absolute differences of ∼12% for TC25 and 10.4%-15.9% in THQ. Furthermore, we found that including the accurate treatment position and anatomy in treatment planning led to an improvement of 2% in TC25 and 4.6%-10.6% in THQ. CONCLUSIONS: This study showed that precise patient position and anatomy are relevant since these affect the accuracy of HTP predictions. The major part of improved accuracy is related to implementing the correct position of the patient in the applicator. Hence, our study shows a clear incentive to accurately match the patient position in HTP with the actual treatment.


Assuntos
Hipertermia Induzida , Terapia Assistida por Computador , Neoplasias do Colo do Útero , Feminino , Humanos , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Terapia Assistida por Computador/métodos
2.
Int J Hyperthermia ; 40(1): 2184399, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36907223

RESUMO

PURPOSE: MR thermometry (MRT) enables noninvasive temperature monitoring during hyperthermia treatments. MRT is already clinically applied for hyperthermia treatments in the abdomen and extremities, and devices for the head are under development. In order to optimally exploit MRT in all anatomical regions, the best sequence setup and post-processing must be selected, and the accuracy needs to be demonstrated. METHODS: MRT performance of the traditionally used double-echo gradient-echo sequence (DE-GRE, 2 echoes, 2D) was compared to multi-echo sequences: a 2D fast gradient-echo (ME-FGRE, 11 echoes) and a 3D fast gradient-echo sequence (3D-ME-FGRE, 11 echoes). The different methods were assessed on a 1.5 T MR scanner (GE Healthcare) using a phantom cooling down from 59 °C to 34 °C and unheated brains of 10 volunteers. In-plane motion of volunteers was compensated by rigid body image registration. For the ME sequences, the off-resonance frequency was calculated using a multi-peak fitting tool. To correct for B0 drift, the internal body fat was selected automatically using water/fat density maps. RESULTS: The accuracy of the best performing 3D-ME-FGRE sequence was 0.20 °C in phantom (in the clinical temperature range) and 0.75 °C in volunteers, compared to DE-GRE values of 0.37 °C and 1.96 °C, respectively. CONCLUSION: For hyperthermia applications, where accuracy is more important than resolution or scan-time, the 3D-ME-FGRE sequence is deemed the most promising candidate. Beyond its convincing MRT performance, the ME nature enables automatic selection of internal body fat for B0 drift correction, an important feature for clinical application.


Assuntos
Hipertermia Induzida , Termometria , Humanos , Termometria/métodos , Hipertermia Induzida/métodos , Imagens de Fantasmas , Encéfalo , Imageamento por Ressonância Magnética/métodos
3.
J Therm Biol ; 115: 103625, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37429086

RESUMO

PURPOSE: To compare different thermal tissue models for head and neck hyperthermia treatment planning, and to assess the results using predicted and measured applied power data from clinical treatments. METHODS: Three commonly used temperature models from literature were analysed: "constant baseline", "constant thermal stress" and "temperature dependent". Power and phase data of 93 treatments of 20 head and neck patients treated with the HYPERcollar3D applicator were used. The impact on predicted median temperature T50 inside the target region was analysed with maximum allowed temperature of 44 °C in healthy tissue. The robustness of predicted T50 for the three models against the influence of blood perfusion, thermal conductivity and the assumed hotspot temperature level was analysed. RESULTS: We found an average predicted T50 of 41.0 ± 1.3 °C (constant baseline model), 39.9 ± 1.1 °C (constant thermal stress model) and 41.7 ± 1.1 °C (temperature dependent model). The constant thermal stress model resulted in the best agreement between the predicted power (P = 132.7 ± 45.9 W) and the average power measured during the hyperthermia treatments (P = 129.1 ± 83.0 W). CONCLUSION: The temperature dependent model predicts an unrealistically high T50. The power values for the constant thermal stress model, after scaling simulated maximum temperatures to 44 °C, matched best to the average measured powers. We consider this model to be the most appropriate for temperature predictions using the HYPERcollar3D applicator, however further studies are necessary for developing of robust temperature model for tissues during heat stress.


Assuntos
Hipertermia Induzida , Humanos , Hipertermia Induzida/métodos , Temperatura , Pescoço , Hipertermia/etiologia , Cabeça
4.
Int J Hyperthermia ; 38(1): 1425-1442, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34581246

RESUMO

BACKGROUND: The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. MATERIALS AND METHODS: The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. RESULTS AND DISCUSSION: Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). CONCLUSION: We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included.


Assuntos
Hipertermia Induzida , Neoplasias , Benchmarking , Simulação por Computador , Humanos , Hipertermia , Neoplasias/terapia
5.
Int J Hyperthermia ; 37(1): 15-27, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31918599

RESUMO

Clinical trials have demonstrated the therapeutic benefits of adding radiofrequency (RF) hyperthermia (HT) as an adjuvant to radio- and chemotherapy. However, maximum utilization of these benefits is hampered by the current inability to maintain the temperature within the desired range. RF HT treatment quality is usually monitored by invasive temperature sensors, which provide limited data sampling and are prone to infection risks. Magnetic resonance (MR) temperature imaging has been developed to overcome these hurdles by allowing noninvasive 3D temperature monitoring in the target and normal tissues. To exploit this feature, several approaches for inserting the RF heating devices into the MR scanner have been proposed over the years. In this review, we summarize the status quo in MR-guided RF HT devices and analyze trends in these hybrid hardware configurations. In addition, we discuss the various approaches, extract best practices and identify gaps regarding the experimental validation procedures for MR - RF HT, aimed at converging to a common standard in this process.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Terapia por Radiofrequência/métodos , Humanos
6.
Int J Hyperthermia ; 37(1): 608-616, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32515240

RESUMO

Purpose: Thermal dose-effect relations have demonstrated that clinical effectiveness of hyperthermia would benefit from more controlled heating of the tumor. Hyperthermia treatment planning (HTP) is a potent tool to study strategies enabling target conformal heating, but its accuracy is affected by patient modeling approximations. Homogeneous phantoms models are being used that do not match the body shape of patients in treatment position and often have unrealistic target volumes. As a consequence, simulation accuracy is affected, and performance comparisons are difficult. The aim of this study is to provide the first step toward standardization of HTP simulation studies in terms of patient modeling by introducing the Erasmus Virtual Patient Repository (EVPR): a virtual patient model database.Methods: Four patients with a tumor in the head and neck or the pelvis region were selected, and corresponding models were created using a clinical segmentation procedure. Using the Erasmus University Medical Center standard procedure, HTP was applied to these models and compared to HTP for commonly used surrogate models.Results: Although this study was aimed at presenting the EVPR database, our study illustrates that there is a non-negligible difference in the predicted SAR patterns between patient models and homogeneous phantom-based surrogate models. We further demonstrate the difference between actual and simplified target volumes being used today.Conclusion: Our study describes the EVPR for the research community as a first step toward standardization of hyperthermia simulation studies.


Assuntos
Hipertermia Induzida , Hipertermia , Simulação por Computador , Cabeça , Humanos , Padrões de Referência
7.
Int J Hyperthermia ; 37(1): 1103-1115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32981391

RESUMO

INTRODUCTION: Within the hyperthermia community, consensus exists that clinical outcome of the treatment radiotherapy and/or chemotherapy plus hyperthermia (i.e. elevating tumor temperature to 40 - 44 °C) is related to the applied thermal dose; hence, treatment quality is crucial for the success of prospective multi-institution clinical trials. Currently, applicator quality assurance (QA) measurements are implemented independently at each institution using basic cylindrical phantoms. A multi-institution comparison of heating quality using magnetic resonance thermometry (MRT) and anatomical representative anthropomorphic phantoms provides a unique opportunity to obtain novel QA insights to facilitate multi-institution trial evaluation. OBJECTIVE: Perform a systematic QA procedure to compare the performance of MR-compatible hyperthermia systems in five institutions. METHODS AND MATERIALS: Anthropomorphic phantoms, including pelvic and spinal bones, were produced. Clinically relevant power of 600 watts was applied for ∼12 min to allow for 8 sequential MR-scans. The 3D-heating distribution, steering capabilities, and presence of off-target heating were analyzed. RESULTS: The evaluated devices show comparable heating profiles for centric and eccentric targets. The differences observed in the 3D-heating profiles are the result of variations in the exact phantom positioning and applicator characteristics, whereby positioning of the phantom followed current ESHO-QA guidelines. CONCLUSION: Anthropomorphic phantoms were used to perform QA-measurements of MR-guided hyperthermia systems operating in MR-scanners of different brands. Comparable heating profiles are shown for the five evaluated institutions. Subcentimeter differences in position substantially affected the results when evaluating the heating patterns. Integration of advanced phantoms and precise positioning in QA-guidelines should be evaluated to guarantee the best quality patient care.


Assuntos
Calefação , Hipertermia Induzida , Humanos , Hipertermia , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Estudos Prospectivos
8.
Sensors (Basel) ; 20(10)2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32456027

RESUMO

The potential of MR thermometry (MRT) fostered the development of MRI compatible radiofrequency (RF) hyperthermia devices. Such device integration creates major technological challenges and a crucial point for image quality is the water bolus (WB). The WB is located between the patient body and external sources to both couple electromagnetic energy and to cool the patient skin. However, the WB causes MRT errors and unnecessarily large field of view. In this work, we studied making the WB MRI transparent by an optimal concentration of compounds capable of modifying T 2 * relaxation without an impact on the efficiency of RF heating. Three different T 2 * reducing compounds were investigated, namely CuSO 4 , MnCl 2 , and Fe 3 O 4 . First, electromagnetic properties and T 2 * relaxation rates at 1.5 T were measured. Next, through multi-physics simulations, the predicted effect on the RF-power deposition pattern was evaluated and MRT precision was experimentally assessed. Our results identified 5 mM Fe 3 O 4 solution as optimal since it does not alter the RF-power level needed and improved MRT precision from 0.39 ∘ C to 0.09 ∘ C. MnCl 2 showed a similar MRT improvement, but caused unacceptable RF-power losses. We conclude that adding Fe 3 O 4 has significant potential to improve RF hyperthermia treatment monitoring under MR guidance.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Ondas de Rádio , Termometria , Humanos , Imagens de Fantasmas , Água
9.
Int J Hyperthermia ; 36(1): 456-465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973030

RESUMO

PURPOSE: Hyperthermia treatment quality determines treatment effectiveness as shown by the clinically derived thermal-dose effect relations. SAR based optimization factors are used as possible surrogate for temperature, since they are not affected by thermal tissue properties uncertainty and variations. Previously, target coverage (TC) at the 25% and 50% iso-SAR level was shown predictive for treatment outcome in superficial hyperthermia and the target-to-hot-spot-quotient (THQ) was shown to highly correlate with predictive temperature in deep pelvic hyperthermia. Here, we investigate the correlation with temperature for THQ and TC using an 'intermediate' scenario: semi-deep hyperthermia in the head & neck region using the HYPERcollar3D. METHODS: Fifteen patient-specific models and two different planning approaches were used, including random perturbations to circumvent optimization bias. The predicted SAR indicators were compared to predicted target temperature distribution indicators T50 and T90, i.e., the median and 90th percentile temperature respectively. RESULTS: The intra-patient analysis identified THQ, TC25 and TC50 as good temperature surrogates: with a mean correlation coefficient R2T50 = 0.72 and R2T90=0.66. The inter-patient analysis identified the highest correlation with TC25 (R2T50 = 0.76, R2T90=0.54) and TC50 (R2T50 = 0.74, R2T90 = 0.56). CONCLUSION: Our investigation confirmed the validity of our current strategy for deep hyperthermia in the head & neck based on a combination of THQ and TC25. TC50 was identified as the best surrogate since it enables optimization and patient inclusion decision making using one single parameter.


Assuntos
Cabeça/irrigação sanguínea , Hipertermia Induzida/métodos , Pescoço/irrigação sanguínea , Humanos , Resultado do Tratamento
10.
Int J Hyperthermia ; 36(1): 801-811, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31450989

RESUMO

Purpose: To investigate the effect of patient specific vessel cooling on head and neck hyperthermia treatment planning (HTP). Methods and materials: Twelve patients undergoing radiotherapy were scanned using computed tomography (CT), magnetic resonance imaging (MRI) and contrast enhanced MR angiography (CEMRA). 3D patient models were constructed using the CT and MRI data. The arterial vessel tree was constructed from the MRA images using the 'graph-cut' method, combining information from Frangi vesselness filtering and region growing, and the results were validated against manually placed markers in/outside the vessels. Patient specific HTP was performed and the change in thermal distribution prediction caused by arterial cooling was evaluated by adding discrete vasculature (DIVA) modeling to the Pennes bioheat equation (PBHE). Results: Inclusion of arterial cooling showed a relevant impact, i.e., DIVA modeling predicts a decreased treatment quality by on average 0.19 °C (T90), 0.32 °C (T50) and 0.35 °C (T20) that is robust against variations in the inflow blood rate (|ΔT| < 0.01 °C). In three cases, where the major vessels transverse target volume, notable drops (|ΔT| > 0.5 °C) were observed. Conclusion: Addition of patient-specific DIVA into the thermal modeling can significantly change predicted treatment quality. In cases where clinically detectable vessels pass the heated region, we advise to perform DIVA modeling.


Assuntos
Vasos Sanguíneos/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/irrigação sanguínea , Hipertermia Induzida , Modelagem Computacional Específica para o Paciente , Vasos Sanguíneos/anatomia & histologia , Estudos de Viabilidade , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Imageamento por Ressonância Magnética , Temperatura , Terapia Assistida por Computador , Tomografia Computadorizada por Raios X
11.
MAGMA ; 32(3): 369-380, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30515641

RESUMO

OBJECTIVE: Mild hyperthermia (HT) treatments are generally monitored by phase-referenced proton resonance frequency shift calculations. A novel phase and thus temperature-sensitive fast spin echo (TFSE) sequence is introduced and compared to the double echo gradient echo (DEGRE) sequence. THEORY AND METHODS: For a proton resonance frequency shift (PRFS)-sensitive TFSE sequence, a phase cycling method is applied to separate even from odd echoes. This method compensates for conductivity change-induced bias in temperature mapping as does the DEGRE sequence. Both sequences were alternately applied during a phantom heating experiment using the clinical setup for deep radio frequency HT (RF-HT). The B0 drift-corrected temperature values in a region of interest around temperature probes are compared to the temperature probe data and further evaluated in Bland-Altman plots. The stability of both methods was also tested within the thighs of three volunteers at a constant temperature using the subcutaneous fat layer for B0-drift correction. RESULTS: During the phantom heating experiment, on average TFSE temperature maps achieved double temperature-to-noise ratio (TNR) efficiency in comparison with DEGRE temperature maps. In-vivo images of the thighs exhibit stable temperature readings of ± 1 °C over 25 min of scanning in three volunteers for both methods. On average, the TNR efficiency improved by around 25% for in vivo data. CONCLUSION: A novel TFSE method has been adapted to monitor temperature during mild HT.


Assuntos
Hipertermia Induzida/métodos , Pelve/diagnóstico por imagem , Prótons , Ondas de Rádio , Termografia/métodos , Condutividade Elétrica , Desenho de Equipamento , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-Ruído
12.
Int J Hyperthermia ; 34(8): 1248-1254, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29347853

RESUMO

BACKGROUND AND PURPOSE: To protect against any potential adverse effects to human health from localised exposure to radio frequency (100 kHz-3 GHz) electromagnetic fields (RF EMF), international health organisations have defined basic restrictions on specific absorption rate (SAR) in tissues. These exposure restrictions incorporate safety factors which are generally conservative so that exposures that exceed the basic restrictions are not necessarily harmful. The magnitude of safety margin for various exposure scenarios is unknown. This shortcoming becomes more critical for medical applications where the safety guidelines are required to be relaxed. The purpose of this study was to quantify the magnitude of the safety factor included in the current basic restrictions for various exposure scenarios under localised exposure to RF EMF. MATERIALS AND METHODS: For each exposure scenario, we used the lowest thermal dose (TD) required to induce acute local tissue damage reported in literature, calculated the corresponding TD-functional SAR limits (SARTDFL) and related these limits to the existing basic restrictions, thereby estimating the respective safety factor. RESULTS: The margin of safety factor in the current basic restrictions on 10 g peak spatial average SAR (psSAR10g) for muscle is large and can reach up to 31.2. CONCLUSIONS: Our analysis provides clear instructions for calculation of SARTDFL and consequently quantification of the incorporated safety factor in the current basic restrictions. This research can form the basis for further discussion on establishing the guidelines dedicated to a specific exposure scenario, i.e. exposure-specific SAR limits, rather than the current generic guidelines.


Assuntos
Campos Eletromagnéticos , Magnetoterapia/normas , Animais , Temperatura Corporal , Gatos , Cães , Humanos , Suínos
13.
Int J Hyperthermia ; 34(6): 704-713, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28931333

RESUMO

PURPOSE: In this study, we investigated the differences in hyperthermia treatment (HT) quality between treatments applied with different hyperthermia systems for sub-superficial tumours in the head and neck (H&N) region. MATERIALS AND METHODS: In 24 patients, with a clinical target volume (CTV) extending up to 6 cm from the surface, we retrospectively analysed the predicted HT quality achievable by two planar applicator arrays or one phased-array hyperthermia system. Hereto, we calculated and compared the specific absorption rate (SAR) and temperature distribution coverage of the CTV and gross tumour volume (GTV) for the Lucite cone applicator (LCA: planar), current sheet applicator (CSA: planar) and the HYPERcollar (phased-array). RESULTS: The HYPERcollar provides better SAR coverage than planar applicators if the target region is fully enclosed by its applicator frame. For targets extending outside the HYPERcollar frame, sufficient SAR coverage (25% target coverage, i.e. TC25 ≥ 75%) can still be achieved using the LCA when the target is fully under the LCA aperture and not deeper than 50 mm from the patient surface. CONCLUSION: Simulations predict that the HYPERcollar (hence also its successor the HYPERcollar3D) is to be preferred over planar applicators such as LCA and current sheet applicator in sub-superficial tumours in the H&N region when used within specifications.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Hipertermia Induzida/métodos , Feminino , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Pessoa de Meia-Idade
14.
Int J Hyperthermia ; 34(6): 697-703, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28828891

RESUMO

In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (<1 cm3), has a stable and reliable performance (S11< -15 dB) for all working conditions and is MR-compatible.


Assuntos
Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética/métodos , Animais , Camundongos
16.
Int J Hyperthermia ; 32(4): 417-33, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27132465

RESUMO

The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments.


Assuntos
Hipertermia Induzida , Neoplasias da Bexiga Urinária/terapia , Animais , Humanos , Temperatura , Termometria
17.
Int J Hyperthermia ; 31(8): 823-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26446870

RESUMO

PURPOSE: Clinical phase III trials have shown the benefit of adding hyperthermia to radiotherapy and chemotherapy for head and neck cancer (H&N). The HYPERcollar, a functional prototype capable of applying hyperthermia to the entire H&N region was developed. Specific absorption rate-based hyperthermia treatment planning (HTP) is used to optimise HYPERcollar treatments. Hence, besides treatment quality, reproduction and reproducibility of the HTP are also pivotal. In the current work we analysed the impact of key parameters on treatment quality and completely redesigned the mechanical layout of the HYPERcollar for improved treatment quality and patient comfort. MATERIAL AND METHODS: The requirements regarding patient position and the water bolus shape were quantified by simulation studies. The complete mechanical redesign was based on these requirements and non-modellable improvements were experimentally validated. RESULTS: From simulation studies we imposed the required positioning accuracy to be within ±5 mm. Simulation studies also showed that the water bolus shape has an important impact on treatment quality. Solutions to meet the requirements were 1) a redesign of the applicator, 2) a redesign of the water bolus, and 3) a renewed positioning strategy. Experiments were used to demonstrate whether the solutions meet the requirements. CONCLUSIONS: The HYPERcollar redesign improves water bolus shape, stability and skin contact. The renewed positioning strategy allows for positioning of the patient within the required precision of ±5 mm. By clinically introducing the new design, we aim at improving not only treatment quality and reproducibility, but also patient comfort and operator handling, which are all important for a better hyperthermia treatment quality.


Assuntos
Hipertermia Induzida/instrumentação , Simulação por Computador , Desenho de Equipamento , Cabeça , Humanos , Pescoço
18.
Int J Hyperthermia ; 31(6): 686-92, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26134740

RESUMO

PURPOSE: Dosimetry during deep local hyperthermia treatments in the head and neck currently relies on a limited number of invasively placed temperature sensors. The purpose of this study was to assess the feasibility of 3D dosimetry based on patient-specific temperature simulations and sensory feedback. MATERIALS AND METHODS: The study includes 10 patients with invasive thermometry applied in at least two treatments. Based on their invasive thermometry, we optimised patient-group thermal conductivity and perfusion values for muscle, fat and tumour using a 'leave-one-out' approach. Next, we compared the accuracy of the predicted temperature (ΔT) and the hyperthermia treatment quality (ΔT50) of the optimisations based on the patient-group properties to those based on patient-specific properties, which were optimised using previous treatment measurements. As a robustness check, and to enable comparisons with previous studies, we optimised the parameters not only for an applicator efficiency factor of 40%, but also for 100% efficiency. RESULTS: The accuracy of the predicted temperature (ΔT) improved significantly using patient-specific tissue properties, i.e. 1.0 °C (inter-quartile range (IQR) 0.8 °C) compared to 1.3 °C (IQR 0.7 °C) for patient-group averaged tissue properties for 100% applicator efficiency. A similar accuracy was found for optimisations using an applicator efficiency factor of 40%, indicating the robustness of the optimisation method. Moreover, in eight patients with repeated measurements in the target region, ΔT50 significantly improved, i.e. ΔT50 reduced from 0.9 °C (IQR 0.8 °C) to 0.4 °C (IQR 0.5 °C) using an applicator efficiency factor of 40%. CONCLUSION: This study shows that patient-specific temperature simulations combined with tissue property reconstruction from sensory data provides accurate minimally invasive 3D dosimetry during hyperthermia treatments: T50 in sessions without invasive measurements can be predicted with a median accuracy of 0.4 °C.


Assuntos
Neoplasias de Cabeça e Pescoço/terapia , Hipertermia Induzida , Modelagem Computacional Específica para o Paciente , Humanos , Temperatura , Termometria
19.
Bioelectromagnetics ; 36(1): 66-76, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25399806

RESUMO

Among various possible health effects of mobile phone radiation, the risk of inducing cancer has the strongest interest of laymen and health organizations. Recently, the Interphone epidemiological study investigated the association between the estimated Radio Frequency (RF) dose from mobile phones and the risk of developing a brain tumor. Their dosimetric analysis included over 100 phone models but only two homogeneous head phantoms. So, the potential impact of individual morphological features on global and local RF absorption in the brain was not investigated. In this study, we performed detailed dosimetric simulations for 20 head models and quantified the variation of RF dose in different brain regions as a function of head morphology. Head models were exposed to RF fields from generic mobile phones at 835 and 1900 MHz in the "tilted" and "cheek" positions. To evaluate the local RF dose variation, we used and compared two different post-processing methods, that is, averaging specific absorption rate (SAR) over Talairach regions and over sixteen predefined 1 cm(3) cube-shaped field-sensors. The results show that the variation in the averaged SAR among the heads can reach up to 16.4 dB at a 1 cm(3) cube inside the brain (field-sensor method) and alternatively up to 15.8 dB in the medulla region (Talairach method). In conclusion, we show head morphology as an important uncertainty source for dosimetric studies of mobile phones. Therefore, any dosimetric analysis dealing with RF dose at a specific region in the brain (e.g., tumor risk analysis) should be based upon real morphology.


Assuntos
Encéfalo/efeitos da radiação , Telefone Celular , Cabeça/anatomia & histologia , Cabeça/efeitos da radiação , Ondas de Rádio , Adulto , Idoso , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Anatômicos , Imagens de Fantasmas , Radiometria , Incerteza
20.
Strahlenther Onkol ; 190(12): 1117-24, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25015425

RESUMO

BACKGROUND AND PURPOSE: Hyperthermia treatment planning (HTP) is used in the head and neck region (H&N) for pretreatment optimization, decision making, and real-time HTP-guided adaptive application of hyperthermia. In current clinical practice, HTP is based on power-absorption predictions, but thermal dose-effect relationships advocate its extension to temperature predictions. Exploitation of temperature simulations requires region- and temperature-specific thermal tissue properties due to the strong thermoregulatory response of H&N tissues. The purpose of our work was to develop a technique for patient group-specific optimization of thermal tissue properties based on invasively measured temperatures, and to evaluate the accuracy achievable. PATIENTS AND METHODS: Data from 17 treated patients were used to optimize the perfusion and thermal conductivity values for the Pennes bioheat equation-based thermal model. A leave-one-out approach was applied to accurately assess the difference between measured and simulated temperature (∆T). The improvement in ∆T for optimized thermal property values was assessed by comparison with the ∆T for values from the literature, i.e., baseline and under thermal stress. RESULTS: The optimized perfusion and conductivity values of tumor, muscle, and fat led to an improvement in simulation accuracy (∆T: 2.1 ± 1.2 °C) compared with the accuracy for baseline (∆T: 12.7 ± 11.1 °C) or thermal stress (∆T: 4.4 ± 3.5 °C) property values. CONCLUSION: The presented technique leads to patient group-specific temperature property values that effectively improve simulation accuracy for the challenging H&N region, thereby making simulations an elegant addition to invasive measurements. The rigorous leave-one-out assessment indicates that improvements in accuracy are required to rely only on temperature-based HTP in the clinic.


Assuntos
Neoplasias de Cabeça e Pescoço/fisiopatologia , Neoplasias de Cabeça e Pescoço/terapia , Hipertermia Induzida/métodos , Modelos Biológicos , Modelagem Computacional Específica para o Paciente , Terapia Assistida por Computador/métodos , Termografia/métodos , Algoritmos , Simulação por Computador , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Condutividade Térmica , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA