Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 625(7996): 673-678, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38267680

RESUMO

Quantum electrodynamics (QED), the quantum field theory that describes the interaction between light and matter, is commonly regarded as the best-tested quantum theory in modern physics. However, this claim is mostly based on extremely precise studies performed in the domain of relatively low field strengths and light atoms and ions1-6. In the realm of very strong electromagnetic fields such as in the heaviest highly charged ions (with nuclear charge Z ≫ 1), QED calculations enter a qualitatively different, non-perturbative regime. Yet, the corresponding experimental studies are very challenging, and theoretical predictions are only partially tested. Here we present an experiment sensitive to higher-order QED effects and electron-electron interactions in the high-Z regime. This is achieved by using a multi-reference method based on Doppler-tuned X-ray emission from stored relativistic uranium ions with different charge states. The energy of the 1s1/22p3/2 J = 2 → 1s1/22s1/2 J = 1 intrashell transition in the heaviest two-electron ion (U90+) is obtained with an accuracy of 37 ppm. Furthermore, a comparison of uranium ions with different numbers of bound electrons enables us to disentangle and to test separately the one-electron higher-order QED effects and the bound electron-electron interaction terms without the uncertainty related to the nuclear radius. Moreover, our experimental result can discriminate between several state-of-the-art theoretical approaches and provides an important benchmark for calculations in the strong-field domain.

2.
J Synchrotron Radiat ; 28(Pt 1): 176-180, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399566

RESUMO

Dichroism is one of the most important optical effects in both the visible and the X-ray range. Besides absorption, scattering can also contribute to dichroism. This paper demonstrates that, based on the example of polyimide, materials can show tiny dichroism even far from electronic resonances due to scattering. Although the effect is small, it can lead to a measurable polarization change and might have influence on highly sensitive polarimetric experiments.

3.
Phys Rev Lett ; 126(11): 113201, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33798357

RESUMO

Above-threshold ionization spectra from cesium are measured as a function of the carrier-envelope phase (CEP) using laser pulses centered at 3.1 µm wavelength. The directional asymmetry in the energy spectra of backscattered electrons oscillates three times, rather than once, as the CEP is changed from 0 to 2π. Using the improved strong-field approximation, we show that the unusual behavior arises from the interference of few quantum orbits. We discuss the conditions for observing the high-order CEP dependence, and draw an analogy with time-domain holography with electron wave packets.

4.
Phys Rev Lett ; 119(18): 183201, 2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29219565

RESUMO

Ionization of an atom or molecule by a strong laser field produces suboptical cycle wave packets whose control has given rise to attosecond science. The final states of the wave packets depend on ionization and deflection by the laser field, which are convoluted in conventional experiments. Here, we demonstrate a technique enabling efficient electron deflection, separate from the field driving strong-field ionization. Using a midinfrared deflection field permits one to distinguish electron wave packets generated at different field maxima of an intense few-cycle visible laser pulse. We utilize this capability to trace the scattering of low-energy electrons driven by the midinfrared field. Our approach represents a general technique for studying and controlling strong-field ionization dynamics on the attosecond time scale.

5.
Opt Express ; 23(12): 15278-89, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26193509

RESUMO

We study THz-emission from a plasma driven by an incommensurate-frequency two-colour laser field. A semi-classical transient electron current model is derived from a fully quantum-mechanical description of the emission process in terms of sub-cycle field-ionization followed by continuum-continuum electron transitions. For the experiment, a CEP-locked laser and a near-degenerate optical parametric amplifier are used to produce two-colour pulses that consist of the fundamental and its near-half frequency. By choosing two incommensurate frequencies, the frequency of the CEP-stable THz-emission can be continuously tuned into the mid-IR range. This measured frequency dependence of the THz-emission is found to be consistent with the semi-classical transient electron current model, similar to the Brunel mechanism of harmonic generation.

6.
Opt Lett ; 40(13): 3137-40, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26125386

RESUMO

The carrier-envelope phase (CEP) dependence of few-cycle above-threshold ionization (ATI) of Xe is calibrated for use as a reference measurement for determining and controlling the absolute CEP in other interactions. This is achieved by referencing the CEP-dependent ATI measurements of Xe to measurements of atomic H, which are in turn referenced to ab initio calculations for atomic H. This allows for the accurate determination of the absolute CEP dependence of Xe ATI, which enables relatively easy determination of the offset between the relative CEP measured and/or controlled by typical devices and the absolute CEP in the interaction.

7.
Phys Rev Lett ; 115(19): 193903, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588384

RESUMO

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.

8.
Phys Rev Lett ; 115(5): 055002, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274425

RESUMO

We present few-femtosecond shadowgraphic snapshots taken during the nonlinear evolution of the plasma wave in a laser wakefield accelerator with transverse synchronized few-cycle probe pulses. These snapshots can be directly associated with the electron density distribution within the plasma wave and give quantitative information about its size and shape. Our results show that self-injection of electrons into the first plasma-wave period is induced by a lengthening of the first plasma period. Three-dimensional particle-in-cell simulations support our observations.

9.
Opt Lett ; 38(22): 4705-7, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24322111

RESUMO

Laser-produced solid density plasmas are well-known as table-top sources of electromagnetic radiation. Recent studies have shown that energetic broadband terahertz pulses (T rays) can also be generated from laser-driven compact ion accelerators. Here we report the measurement of record-breaking T-Ray pulses with energies no less than 0.7 mJ. The terahertz spectrum has been characterized for frequencies ranging from 0.1-133 THz. The dependence of T-Ray yield on incident laser energy is linear and shows no tendencies of saturation. The noncollinear emission pattern and the high yield reveal that the T rays are generated by the transient field at the rear surface of the solid target.

10.
Phys Rev Lett ; 111(9): 093002, 2013 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-24033029

RESUMO

Measurements and calculations of the absolute carrier-envelope-phase (CEP) effects in the photodissociation of the simplest molecule, H2(+), with a 4.5-fs Ti:sapphire laser pulse at intensities up to (4±2)×10(14) W/cm2 are presented. Localization of the electron with respect to the two nuclei (during the dissociation process) is controlled via the CEP of the ultrashort laser pulses. In contrast to previous CEP-dependent experiments with neutral molecules, the dissociation of the molecular ions is not preceded by a photoionization process, which strongly influences the CEP dependence. Kinematically complete data are obtained by time- and position-resolved coincidence detection. The phase dependence is determined by a single-shot phase measurement correlated to the detection of the dissociation fragments. The experimental results show quantitative agreement with ab initio 3D time-dependent Schrödinger equation calculations that include nuclear vibration and rotation.

11.
Phys Rev Lett ; 111(7): 074802, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23992071

RESUMO

We report the observation of subpicosecond terahertz (T-ray) pulses with energies ≥460 µJ from a laser-driven ion accelerator, thus rendering the peak power of the source higher even than that of state-of-the-art synchrotrons. Experiments were performed with intense laser pulses (up to 5×10(19) W/cm(2)) to irradiate thin metal foil targets. Ion spectra measured simultaneously showed a square law dependence of the T-ray yield on particle number. Two-dimensional particle-in-cell simulations show the presence of transient currents at the target rear surface which could be responsible for the strong T-ray emission.

12.
Phys Rev Lett ; 110(25): 254801, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23829740

RESUMO

The polarization purity of 6.457- and 12.914-keV x rays has been improved to the level of 2.4×10(-10) and 5.7×10(-10). The polarizers are channel-cut silicon crystals using six 90° reflections. Their performance and possible applications are demonstrated in the measurement of the optical activity of a sucrose solution.

13.
Opt Express ; 20(13): 13870-7, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714452

RESUMO

The physics of high harmonics has led to the generation of attosecond pulses and to trains of attosecond pulses. Measurements that confirm the pulse duration are all performed in the far field. All pulse duration measurements tacitly assume that both the beam's wavefront and intensity profile are independent of frequency. However, if one or both are frequency dependent, then the retrieved pulse duration depends on the location where the measurement is made. We measure that each harmonic is very close to a Gaussian, but we also find that both the intensity profile and the beam wavefront depend significantly on the harmonic order. Thus, our findings mean that the pulse duration will depend on where the pulse is observed. Measurement of spectrally resolved wavefronts along with temporal characterization at one single point in the beam would enable complete space-time reconstruction of attosecond pulses. Future attosecond science experiments need not be restricted to spatially averaged observables. Our approach paves the way to recovery of the single molecule response to the strong field.


Assuntos
Luz , Modelos Estatísticos , Refratometria/métodos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador
14.
Opt Lett ; 37(16): 3411-3, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381274

RESUMO

Experimental results from the generation of Raman sidebands using optical vortices are presented. By generating two sets of sidebands originating from different locations in a Raman-active crystal, one set containing optical orbital angular momentum and the other serving as a reference, Young's double slit experiment was simultaneously realized for each sideband. The interference between the two sets of sidebands was used to determine the helicity and topological charge in each order. Topological charges in all orders were found to be discrete and follow selection rules predicted by a cascaded Raman process.

15.
Phys Rev Lett ; 108(22): 223601, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23003592

RESUMO

The velocity map recorded in above-threshold ionization of xenon at 800 nm exhibits a distinct carpetlike pattern of maxima and minima for emission in the direction approximately perpendicular to the laser polarization. The pattern is well reproduced by a numerical solution of the time-dependent Schrödinger equation. In terms of the simple-man model and the strong-field approximation, it is explained by the constructive and destructive interference of the contribution of the long and the short orbit. Strictly perpendicular emission is caused by ionization at the two peaks of the laser field per cycle, which results in a 2hω separation of the above-threshold ionization rings.

16.
Phys Rev Lett ; 109(23): 233904, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368205

RESUMO

We bring the methodology of orienting polar molecules together with the phase sensitivity of high harmonic spectroscopy to experimentally compare the phase difference of attosecond bursts of radiation emitted upon electron recollision from different ends of a polar molecule. This phase difference has an impact on harmonics from aligned polar molecules, suppressing emission from the molecules parallel to the driving laser field while favoring the perpendicular ones. For oriented molecules, we measure the amplitude ratio of even to odd harmonics produced when intense light irradiates CO molecules and determine the degree of orientation and the phase difference of attosecond bursts using molecular frame ionization and recombination amplitudes. The sensitivity of the high harmonic spectrum to subtle phase differences in the emitted radiation makes it a detailed probe of polar molecules and will drive major advances in the theory of high harmonic generation.

17.
Phys Rev Lett ; 109(12): 125002, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005951

RESUMO

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L(p)/λ < 1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L(p)→0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

18.
Opt Express ; 19(5): 4464-71, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21369278

RESUMO

The pulse lengths of intense few-cycle (4-10 fs) laser pulses at 790 nm are determined in real-time using a stereographic above-threshold ionization (ATI) measurement of Xe, i.e. the same apparatus recently shown to provide a precise, real-time, every-single-shot, carrier-envelope phase measurement of ultrashort laser pulses. The pulse length is calibrated using spectral-phase interferometry for direct electric-field reconstruction (SPIDER) and roughly agrees with calculations done using quantitative rescattering theory (QRS). This stereo-ATI technique provides the information necessary to characterize the waveform of every pulse in a kHz pulse train, within the Gaussian pulse approximation, and relies upon no theoretical assumptions. Moreover, the real-time display is a highly effective tool for tuning and monitoring ultrashort pulse characteristics.


Assuntos
Análise de Falha de Equipamento/instrumentação , Lasers , Fotometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Sistemas Computacionais , Desenho de Equipamento , Íons
19.
Opt Express ; 19(15): 14321-34, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21934796

RESUMO

We present an in situ beam characterization technique to analyze femtosecond optical beams in a folded version of a 2f-2f setup. This technique makes use of a two-dimensional spatial light modulator (SLM) to holographically redirect radiation between different diffraction orders. This manipulation of light between diffraction orders is carried out locally within the beam. Because SLMs can withstand intensities of up to I ∼ 10(11) W/cm2, this makes them suitable for amplified femtosecond radiation. The flexibility of the SLM was demonstrated by producing a diverse assortment of "soft apertures" that are mechanically difficult or impossible to reproduce. We test our method by holographically knife-edging and tomographically reconstructing both continuous wave and broadband radiation in transverse optical modes.

20.
Opt Lett ; 36(1): 1-3, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21209667

RESUMO

In this Letter we demonstrate a method for real-time determination of the carrier-envelope phase of each and every single ultrashort laser pulse at kilohertz repetition rates. The technique expands upon the recent work of Wittmann and incorporates a stereographic above-threshold laser-induced ionization measurement and electronics optimized to produce a signal corresponding to the carrier-envelope phase within microseconds of the laser interaction, thereby facilitating data-tagging and feedback applications. We achieve a precision of 113 mrad (6.5°) over the entire 2π range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA