RESUMO
Iron redistribution in the intestine after total body irradiation is an established phenomenon. However, in the literature, there are no reports about the use of X-ray fluorescence microscopy or equivalent techniques to generate semi-quantitative 2D maps of iron in sectioned intestine samples from irradiated mice. In this work, we used X-ray fluorescence microscopy (XFM) to map the elemental content of iron as well as phosphorus, sulfur, calcium, copper and zinc in tissue sections of the small intestine from eight-week-old BALB/c male mice that developed gastrointestinal acute radiation syndrome (GI-ARS) in response to exposure to 8 Gray of gamma rays. Seven days after irradiation, we found that the majority of the iron is localized as hot spots in the intercellular regions of the area surrounding crypts and stretching between the outer perimeter of the intestine and the surface cell layer of villi. In addition, this study represents our current efforts to develop elemental cell classifiers that could be used for the automated generation of regions of interest for analyses of X-ray fluorescence maps. Once developed, such a tool will be instrumental for studies of effects of radiation and other toxicants on the elemental content in cells and tissues. While XFM studies cannot be conducted on living organisms, it is possible to envision future scenarios where XFM imaging of single cells sloughed from the human (or rodent) intestine could be used to follow up on the progression of GI-ARS.
Assuntos
Raios gama , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Animais , Raios gama/efeitos adversos , Camundongos , Masculino , Microscopia de Fluorescência/métodos , Ferro/metabolismo , Ferro/análise , Intestino Delgado/efeitos da radiação , Intestino Delgado/metabolismo , Intestinos/efeitos da radiação , Intestinos/patologia , Espectrometria por Raios X/métodosRESUMO
Engagement of community participation is an innovative driver of modern research. However, to benefit the communities being studied, it is imperative to continuously evaluate ethical considerations, the relationship dynamic between researchers and community members, and the responsiveness of research teams to the needs and preferences of communities. Northwestern University's Center for Health Equity Transformation founded a community scientist program in 2018 that implemented a study using the Community-Based Participatory Research (CBPR) model. This project is an ongoing study of heavy metal exposure by geographic location in Chicago. Community scientists from various backgrounds, communities, and organizations formed an advisory panel, partnering with the cancer research team. This commentary describes lessons learned in structuring meaningful community involvement and benefit in CBPR, with a focus on three lessons learned that relate to ethics, relationships, and responsiveness. Our findings lay new groundwork for iteratively shaping best practices in CBPR.
Assuntos
Pesquisa Participativa Baseada na Comunidade , Médicos , Humanos , Projetos de Pesquisa , ChicagoRESUMO
INTRODUCTION: Neuroblastoma is one of the most common childhood cancers with one of the lowest survival rates, accounting for 15% of childhood cancer mortality. Approximately half of children treated for high-risk neuroblastoma will relapse following remission, while another 15% of patients do not respond to initial treatment. External beam radiation is infrequently used for treatment of pediatric cancer such as neuroblastoma, typically reserved for palliative care in patients with aggressive metastatic disease who fail to respond to alternative treatments. Understanding effects of radiation on neuroblastoma cells could improve efficacy of this final means of therapy to decrease tumor burden and stabilize the disease. METHODS: In this study, we found that two microRNAs with opposite functions were expressed in two neuroblastoma cell lines with marked differences in radiosensitivity. Clonogenic assays were used to evaluate the radiation responses for these 2 cell lines, designated SK-N-AS and SK-N-DZ; cells were then irradiated at doses that cause 90% cell killing based on clonogenic assay and their RNA isolated and subjected to microarray analysis. In addition, cells were transfected with pre-miRNA constructs that led to overexpression of microRNAs miR-34a and miR-1228 to determine possible microRNA regulation of radiation response. RESULTS: Statistically significant differences were detected for expression of several thousand genes when the 2 cell lines were compared with each other. In comparison, radiation exposure resulted in only minor gene expression differences of less than 2-fold at the 1 h postirradiation timepoint in both cell lines. Overexpression of miR-34a and miR-1228 in either cell line did not alter this outcome. DISCUSSION: While these two neuroblastoma cell lines are phenotypically diverse and gene expression differences between them are extensive, we observed that the regulation of gene expression in both cell lines is in a stable equilibrium at early timepoints after exposure to ionizing radiation.
Assuntos
MicroRNAs , Neuroblastoma , Criança , Humanos , Linhagem Celular Tumoral , Recidiva Local de Neoplasia/genética , MicroRNAs/genética , Neuroblastoma/genética , Neuroblastoma/radioterapia , Neuroblastoma/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão GênicaRESUMO
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Assuntos
Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos , Metais/química , HumanosRESUMO
As x-ray microscopy is pushed into the nanoscale with the advent of more bright and coherent x-ray sources, associated improvement in spatial resolution becomes highly vulnerable to geometrical errors and uncertainties during data collection. We address a form of error in tomography experiments, namely, the drift between projections during the tomographic scan. Our proposed method can simultaneously recover the drift, while tomographically reconstructing the specimen based on a joint iterative optimization scheme. This approach utilizes the correlation provided from different view angles and different signals. While generally applicable, we demonstrate our method on x-ray fluorescence tomography from a tissue specimen and compare the reconstruction quality with conventional methods.
RESUMO
Chemotherapy-induced peripheral neuropathy (CIPN) is a side effect of platinum-based chemotherapy and decreases the quality of life of cancer patients. We compared neuroprotective properties of several agents using an in vitro model of terminally differentiated human cells NT2-N derived from cell line NT2/D1. Sodium azide and an active metabolite of amifostine (WR1065) increase cell viability in simultaneous treatment with cisplatin. In addition, WR1065 protects the non-dividing neurons by decreasing cisplatin caused oxidative stress and apoptosis. Accumulation of Pt in cisplatin-treated cells was heterogeneous, but the frequency and concentration of Pt in cells were lowered in the presence of WR1065 as shown by X-ray fluorescence microscopy (XFM). Transition metals accumulation accompanied Pt increase in cells; this effect was equally diminished in the presence of WR1065. To analyze possible chemical modulation of Pt-DNA bonds, we examined the platinum LIII near edge spectrum by X-ray absorption spectroscopy. The spectrum found in cisplatin-DNA samples is altered differently by the addition of either WR1065 or sodium azide. Importantly, a similar change in Pt edge spectra was noted in cells treated with cisplatin and WR1065. Therefore, amifostine should be reconsidered as a candidate for treatments that reduce or prevent CIPN.
Assuntos
Antioxidantes/farmacologia , Cisplatino/efeitos adversos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Mercaptoetilaminas/farmacologia , Crescimento Neuronal/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Azida Sódica/farmacologiaRESUMO
Trace metals play important roles in biological function, and x-ray fluorescence microscopy (XFM) provides a way to quantitatively image their distribution within cells. The faithfulness of these measurements is dependent on proper sample preparation. Using mouse embryonic fibroblast NIH/3T3 cells as an example, we compare various approaches to the preparation of adherent mammalian cells for XFM imaging under ambient temperature. Direct side-by-side comparison shows that plunge-freezing-based cryoimmobilization provides more faithful preservation than conventional chemical fixation for most biologically important elements including P, S, Cl, K, Fe, Cu, Zn and possibly Ca in adherent mammalian cells. Although cells rinsed with fresh media had a great deal of extracellular background signal for Cl and Ca, this approach maintained cells at the best possible physiological status before rapid freezing and it does not interfere with XFM analysis of other elements. If chemical fixation has to be chosen, the combination of 3% paraformaldehyde and 1.5 % glutaraldehyde preserves S, Fe, Cu and Zn better than either fixative alone. When chemically fixed cells were subjected to a variety of dehydration processes, air drying was proved to be more suitable than other drying methods such as graded ethanol dehydration and freeze drying. This first detailed comparison for x-ray fluorescence microscopy shows how detailed quantitative conclusions can be affected by the choice of cell preparation method.
Assuntos
Fibroblastos/química , Fibroblastos/citologia , Microscopia de Fluorescência/métodos , Espectrometria por Raios X/métodos , Fixação de Tecidos/métodos , Oligoelementos/análise , Animais , Camundongos , Células NIH 3T3RESUMO
The glioblastoma (GBM) is characterized by a short median survival and an almost 100% tumor related mortality. GBM cells exhibit highly invasive behavior whose mechanisms are not yet fully understood. The present study explores application of X-ray and visible light microscopy to display the elemental and structural images of cells from 3 patient derived GMB samples and an established GMB cell line. Slight differences in elemental concentrations, in actin cytoskeleton organization and cell morphology were noted between all cells types by X-ray fluorescence and full field soft X-ray microscopy, as well as the Structured Illumination Super-resolution Microscope (SIM). Different sample preparation approaches were used to match each imaging technique. While preparation for SIM included cell fixation and staining, intact frozen hydrated cells were used for the trace element imaging by hard X-ray fluorescence and exploration of the structural features by soft X-ray absorption tomography. Each technique documented differences between samples with regard to morphology and elemental composition and underscored the importance of use of multiple patient derived samples for detailed GBM study.
Assuntos
Glioblastoma/patologia , Actinas/metabolismo , Citoesqueleto/metabolismo , Glioblastoma/ultraestrutura , Humanos , Metais Pesados/metabolismo , Microscopia , Espectrometria por Raios X , Tomografia por Raios XRESUMO
Surface functionalization of nanoparticles has become an important tool for in vivo delivery of bioactive agents to their target sites. Here we describe the reverse strategy, nanoharvesting, in which nanoparticles are used as a tool to isolate bioactive compounds from living cells. Anatase TiO2 nanoparticles smaller than 20 nm form strong bonds with molecules bearing enediol and especially catechol groups. We show that these nanoparticles enter plant cells, conjugate enediol and catechol group-rich flavonoids in situ, and exit plant cells as flavonoid-nanoparticle conjugates. The source plant tissues remain viable after treatment. As predicted by the surface chemistry of anatase TiO2 nanoparticles, quercetin-based flavonoids were enriched amongst the nanoharvested flavonoid species. Nanoharvesting eliminates the use of organic solvents, allows spectral identification of the isolated compounds, and opens new avenues for use of nanomaterials for coupled isolation and testing of bioactive properties of plant-synthesized compounds.
Assuntos
Arabidopsis/química , Flavonoides/isolamento & purificação , Titânio/química , Antocianinas/química , Antocianinas/isolamento & purificação , Catecóis/química , Catecóis/isolamento & purificação , Flavonoides/química , Nanopartículas , Fosforilação , Quercetina/química , Quercetina/isolamento & purificaçãoRESUMO
Nanomaterials have been shown to have physical and chemical properties that have opened new avenues for cancer diagnosis and therapy. Nanoconstructs that enhance existing treatments for cancer, such as radiation therapy, are being explored in several different ways. Two general paths toward nanomaterial-enabled radiosensitization have been explored: (1) improving the effectiveness of ionizing radiation and (2) modulating cellular pathways leading to a disturbance of cellular homeostasis, thus rendering the cells more susceptible to radiation-induced damage. A variety of different agents that work via one of these two approaches have been explored, many of which modulate direct and indirect DNA damage (gold), radiosensitivity through hyperthermia (Fe), and different cellular pathways. There have been many in vitro successes with the use of nanomaterials for radiosensitization, but in vivo testing has been less efficacious, predominantly because of difficulty in targeting the nanoparticles. As improved methods for tumor targeting become available, it is anticipated that nanomaterials can become clinically useful radiosensitizers for radiation therapy.
Assuntos
Nanoconjugados/uso terapêutico , Nanomedicina/métodos , Neoplasias/terapia , Radioterapia (Especialidade)/métodos , Radiossensibilizantes/administração & dosagem , Animais , HumanosRESUMO
Strontium-90 is a radionuclide found in high concentrations in nuclear reactor waste and nuclear fallout from reactor accidents and atomic bomb explosions. In the 1950s, little was known regarding the health consequences of strontium-90 internalization. To assess the health effects of strontium-90 ingestion in infancy through adolescence, the Atomic Energy Commission and Department of Energy funded large-scale beagle studies at the University of California Davis. Conducted from 1956 to 1989, the strontium-90 ingestion study followed roughly 460 beagles throughout their lifespans after they were exposed to strontium-90 in utero (through feeding of the mother) and fed strontium-90 feed at varying doses from weaning to age 540 days. The extensive medical data and formalin-fixed paraffin-embedded tissues were transferred from UC Davis to the National Radiobiology Archive in 1992 and subsequently to the Northwestern University Radiobiology Archive in 2010. Here, we summarize the design of the strontium-90 ingestion study and give an overview of its most frequent recorded findings. As shown before, radiation-associated neoplasias (osteosarcoma, myeloproliferative syndrome and select squamous cell carcinomas) were almost exclusively observed in the highest dose groups, while the incidence of neoplasias most frequent in controls decreased as dose increased. The occurrence of congestive heart failure in each dose group, not previously assessed by UC Davis researchers, showed a non-significant increase between the controls and lower dose groups that may have been significant had sample sizes been larger. Detailed secondary analyses of these data and samples may uncover health endpoints that were not evaluated by the team that conducted the study.
Assuntos
Radioisótopos de Estrôncio , Radioisótopos de Estrôncio/análise , Radioisótopos de Estrôncio/efeitos adversos , Animais , Cães , California , Feminino , Universidades , Ingestão de Alimentos , Masculino , Neoplasias Induzidas por Radiação/epidemiologia , Neoplasias Induzidas por Radiação/etiologia , História do Século XXRESUMO
Plutonium is a toxic synthetic element with no natural biological function, but it is strongly retained by humans when ingested. Using small-angle X-ray scattering, receptor binding assays and synchrotron X-ray fluorescence microscopy, we find that rat adrenal gland (PC12) cells can acquire plutonium in vitro through the major iron acquisition pathway--receptor-mediated endocytosis of the iron transport protein serum transferrin; however, only one form of the plutonium-transferrin complex is active. Low-resolution solution models of plutonium-loaded transferrins derived from small-angle scattering show that only transferrin with plutonium bound in the protein's C-terminal lobe (C-lobe) and iron bound in the N-terminal lobe (N-lobe) (Pu(C)Fe(N)Tf) adopts the proper conformation for recognition by the transferrin receptor protein. Although the metal-binding site in each lobe contains the same donors in the same configuration and both lobes are similar, the differences between transferrin's two lobes act to restrict, but not eliminate, cellular Pu uptake.
Assuntos
Ferro/metabolismo , Plutônio/metabolismo , Transferrina/metabolismo , Animais , Transporte Biológico , Humanos , Células PC12 , Ligação Proteica , Poluentes Radioativos/metabolismo , RatosRESUMO
Biobanks containing formalin-fixed, paraffin-embedded (FFPE) tissues from animals and human atomic-bomb survivors exposed to radioactive particulates remain a vital resource for understanding the molecular effects of radiation exposure. These samples are often decades old and prepared using harsh fixation processes which limit sample imaging options. Optical imaging of hematoxylin and eosin (H&E) stained tissues may be the only feasible processing option, however, H&E images provide no information about radioactive microparticles or radioactive history. Synchrotron X-ray fluorescence microscopy (XFM) is a robust, non-destructive, semi-quantitative technique for elemental mapping and identifying candidate chemical element biomarkers in FFPE tissues. Still, XFM has never been used to uncover distribution of formerly radioactive micro-particulates in FFPE canine specimens collected more than 30 years ago. In this work, we demonstrate the first use of low-, medium-, and high-resolution XFM to generate 2D elemental maps of ~ 35-year-old, canine FFPE lung and lymph node specimens stored in the Northwestern University Radiobiology Archive documenting distribution of formerly radioactive micro-particulates. Additionally, we use XFM to identify individual microparticles and detect daughter products of radioactive decay. The results of this proof-of-principle study support the use of XFM to map chemical element composition in historic FFPE specimens and conduct radioactive micro-particulate forensics.
Assuntos
Pulmão , Síncrotrons , Humanos , Animais , Cães , Adulto , Fixação de Tecidos , Raios X , Microscopia de Fluorescência/métodos , Inclusão em Parafina , Formaldeído/químicaRESUMO
Ionizing radiation is omnipresent and unavoidable on Earth; nevertheless, the range of doses and modes of radiation delivery that represent health risks remain controversial. Radiation protection policy for civilians in US is set at 1 mSv per year. Average persons from contemporary populations are exposed to several hundred milliSieverts (mSv) over their lifetimes from both natural and human made sources such as radon, cosmic rays, CT-scans (20-50 mSv partial body exposure per scan), etc. Health risks associated with these and larger exposures are focus of many epidemiological studies, but uncertainties of these estimates coupled with individual and environmental variation make it is prudent to attempt to use animal models and tightly controlled experimental conditions to supplement our evaluation of radiation risk question. Data on 11,528 of rodents of both genders exposed to x-ray or gamma-ray radiation in facilities in US and Europe were used for this analysis; animal mortality data argue that fractionated radiation exposures have about 2 fold less risk per Gray than acute radiation exposures in the range of doses between 0.25 and 4 Gy.
Assuntos
Exposição à Radiação , Proteção Radiológica , Radônio , Animais , Feminino , Humanos , Masculino , Doses de Radiação , Exposição à Radiação/efeitos adversos , Radiação Ionizante , Radônio/análise , RoedoresRESUMO
Scanning X-ray fluorescence (XRF) tomography provides powerful characterization capabilities in evaluating elemental distribution and differentiating their inter- and intra-cellular interactions in a three-dimensional (3D) space. Scanning XRF tomography encounters practical challenges from the sample itself, where the range of rotation angles is limited by geometric constraints, involving sample substrates or nearby features either blocking or converging into the field of view. This study aims to develop a reliable and efficient workflow that can (1) expand the experimental window for nanoscale tomographic analysis of local areas of interest within a laterally extended specimen, and (2) bridge 3D analysis at micrometer and nanoscales on the same specimen. We demonstrate the workflow using a specimen of HeLa cells exposed to iron oxide core and titanium dioxide shell (Fe3O4/TiO2) nanocomposites. The workflow utilizes iterative and multiscale XRF data collection with intermediate sample processing by focused ion beam (FIB) sample preparation between measurements at different length scales. Initial assessment combined with precise sample manipulation via FIB allows direct removal of sample regions that are obstacles to both incident X-ray beam and outgoing XRF signals, which considerably improves the subsequent nanoscale tomography analysis. This multiscale analysis workflow has advanced bio-nanotechnology studies by providing deep insights into the interaction between nanocomposites and single cells at a subcellular level as well as statistical assessments from measuring a population of cells.
Assuntos
Nanopartículas , Fluorescência , Células HeLa , Humanos , Fluxo de Trabalho , Raios XRESUMO
PURPOSE: This review is focused on radium and radionuclides in its decay chain in honor of Marie Curie, who discovered this element. MATERIALS AND METHODS: We conglomerated current knowledge regarding radium and its history predating our present understanding of this radionuclide. RESULTS: An overview of the properties of radium and its dose assessment is shown followed by discussions about both the negative detrimental and positive therapeutic applications of radium with this history and its evolution reflecting current innovations in medical science. CONCLUSIONS: We hope to remind all those who are interested in the progress of science about the vagaries of the process of scientific discovery. In addition, we raise the interesting question of whether Marie Curie's initial success was in part possible due to her tight alignment with her husband Pierre Curie who pushed the work along.
Assuntos
Radiologia , Rádio (Elemento) , Feminino , França , História do Século XIX , História do Século XX , Humanos , Radiologia/históriaRESUMO
Microprobe X-ray absorption near edge structure (µ-XANES) measurements were used to determine directly, for the first time, the oxidation state of intracellular plutonium in individual 0.1-µm(2) areas within single rat pheochromocytoma cells (PC12). The living cells were incubated in vitro for 3 h in the presence of Pu added to the media in different oxidation states (Pu(III), Pu(IV), and Pu(VI)) and in different chemical forms. Regardless of the initial oxidation state or chemical form of Pu presented to the cells, the XANES spectra of the intracellular Pu deposits were always consistent with tetravalent Pu even though the intracellular milieu is generally reducing.
Assuntos
Plutônio/química , Animais , Oxirredução , Células PC12 , Ratos , Análise EspectralRESUMO
Nanotechnology has introduced many exciting new tools for the treatment of human diseases. One of the obstacles in its application to that end is the lack of a fundamental understanding of the interaction that occurs between nanoparticles and living cells. This report describes the quantitative analysis of the kinetics and endocytic pathways involved in the uptake of anatase titanium dioxide (TiO(2)) nanoparticles into prostate cancer PC-3M cells. The experiments were performed with TiO(2) nanoconjugates: 6-nm nanoparticles with surface-conjugated fluorescent Alizarin Red S. Results obtained by flow cytometry, fluorescence microscopy, and inductively coupled plasma-mass spectrometry confirmed a complex nanoparticle-cell interaction involving a variety of endocytic mechanisms. The results demonstrated that a temperature, concentration, and time-dependent internalization of the TiO(2) nanoparticles and nanoconjugates occurred via clathrin-mediated endocytosis, caveolin-mediated endocytosis, and macropinocytosis. FROM THE CLINICAL EDITOR: The interaction and uptake of TiO(2) nanoparticles (6-nm) with prostate PC-3M cells was investigated and found to undergo temperature, time, and concentration dependent intracellular transport that was mediated through clathrin pits, caveolae, and macropinocytosis. These results suggest that nanoparticles may widely permeate through tissues and enter almost any active cell through a variety of biological mechanisms, posing both interesting opportunity and possible challenges for systemic use.
Assuntos
Endocitose/fisiologia , Nanopartículas Metálicas , Neoplasias da Próstata/metabolismo , Titânio/metabolismo , Cavéolas/metabolismo , Linhagem Celular Tumoral , Clatrina/metabolismo , Humanos , Masculino , Nanotecnologia , Tamanho da PartículaRESUMO
While few publications have documented the uptake of nanoparticles in plants, this is the first study describing uptake and distribution of the ultrasmall anatase TiO(2) in the plant model system Arabidopsis. We modified the nanoparticle surface with Alizarin red S and sucrose and demonstrated that nanoconjugates traversed cell walls, entered into plant cells, and accumulated in specific subcellular locations. Optical and X-ray fluorescence microscopy coregistered the nanoconjugates in cell vacuoles and nuclei.
Assuntos
Antraquinonas/metabolismo , Arabidopsis/ultraestrutura , Nanopartículas , Titânio/metabolismo , Antraquinonas/química , Arabidopsis/metabolismo , Transporte Biológico , Microscopia de Fluorescência , Nanopartículas/química , Titânio/química , Raios XRESUMO
The Department of Energy conduced ten large-scale neutron irradiation experiments at Argonne National Laboratory between 1972 and 1989. Using a new approach to utilize experimental controls to determine whether a cross comparison between experiments was appropriate, we amalgamated data on neutron exposures to discover that fractionation significantly improved overall survival. A more detailed investigation showed that fractionation only had a significant impact on the death hazard for animals that died from solid tumors, but did not significantly impact any other causes of death. Additionally, we compared the effects of sex, age first irradiated, and radiation fractionation on neutron irradiated mice versus cobalt 60 gamma irradiated mice and found that solid tumors were the most common cause of death in neutron irradiated mice, while lymphomas were the dominant cause of death in gamma irradiated mice. Most animals in this study were irradiated before 150 days of age but a subset of mice was first exposed to gamma or neutron irradiation over 500 days of age. Advanced age played a significant role in decreasing the death hazard for neutron irradiated mice, but not for gamma irradiated mice. Mice that were 500 days old before their first exposures to neutrons began dying later than both sham irradiated or gamma irradiated mice.