Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biodegradation ; 34(3): 235-252, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36840891

RESUMO

Biogranulation has emerged as a viable alternative biological wastewater treatment approach because of its strong biodegradability potential, toxicity tolerance, and biomass retention features. However, this process requires a long duration for biogranules formation to occur. In this study, magnetic powder activated carbon (MPAC) was used as support material in a sequencing batch reactor to enhance biogranules development for wastewater treatment. Two parallel SBRs (designated R1 and R2) were used, with R1 serving as a control without the presence of MPAC while R2 was operated with MPAC. The biodegradability capacity and biomass properties of MPAC biogranules were compared with a control system. The measured diameter of biogranules for R1 and R2 after 8 weeks of maturation were 2.2 mm and 3.4 mm, respectively. The integrity coefficient of the biogranules in R2 was higher (8.3%) than that of R1 (13.4%), indicating that the addition of MPAC improved the structure of the biogranules in R2. The components of extracellular polymeric substances were also higher in R2 than in R1. Scanning electronic microscopy was able to examine the morphological structures of the biogranules which showed there were irregular formations compacted together. However, there were more cavities situated in R1 biogranules (without MPAC) when compared to R2 biogranules (with MPAC). Dye removal reached 65% and 83% in R1 and R2 in the post-development stage. This study demonstrates that the addition of MPAC could shorten and improve biogranules formation. MPAC acted as the support media for microbial growth during the biogranulation developmental process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Carvão Vegetal , Pós , Águas Residuárias , Reatores Biológicos
2.
Environ Sci Pollut Res Int ; 29(60): 89899-89922, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36369439

RESUMO

Microbially induced carbonate precipitation (MICP) is a remarkable method that creates sustainable cementitious binding material for use in geotechnical/structural engineering and environmental engineering. This is due to the increasing demand for alternative environmentally friendly technologies and materials that result in minimal or zero carbon footprint. In contrast to the previously published literature, through bibliometric analysis, this review paper focuses on the current prospects and future research trends of MICP technology via the Scopus database and VOSviewer analysis. The objective of the study was to determine the annual publications and citations trend, most contributing countries, the leading journals, prolific authors, productive institutions, funding sponsors, trending author keywords, and research directions of MICP. There were a total of 1058 articles published from 2001 to 2021 on MICP. The result demonstrated that the volume of publications is increasing. China, Construction and Building Materials, Satoru Kawasaki, Nanyang Technological University, and the National Natural Science Foundation of China are the leading country, journal, author, institution, and funding sponsor in terms of total publications. Through the co-occurrence analysis of the author keywords, MICP was revealed to be the most frequently used author keyword with 121 occurrences, a total link strength of 213, and 152 links to other author keywords. Furthermore, co-occurrence analysis of text data revealed that researchers are concentrating on four important research areas: precipitation, MICP, compressive strength, and biomineralization. This review can provide information to researchers that can lead to novel ideas and research collaboration or engagement on MICP technology.


Assuntos
Bibliometria , Carbonatos , Humanos , Engenharia , Tecnologia , Biomineralização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA