Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
PLoS Pathog ; 19(1): e1011128, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689483

RESUMO

Coronavirus disease 2019 is a respiratory infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Evidence on the pathogenesis of SARS-CoV-2 is accumulating rapidly. In addition to structural proteins such as Spike and Envelope, the functional roles of non-structural and accessory proteins in regulating viral life cycle and host immune responses remain to be understood. Here, we show that open reading frame 8 (ORF8) acts as messenger for inter-cellular communication between alveolar epithelial cells and macrophages during SARS-CoV-2 infection. Mechanistically, ORF8 is a secretory protein that can be secreted by infected epithelial cells via both conventional and unconventional secretory pathways. Conventionally secreted ORF8 is glycosylated and loses the ability to recognize interleukin 17 receptor A of macrophages, possibly due to the steric hindrance imposed by N-glycosylation at Asn78. However, unconventionally secreted ORF8 does not undergo glycosylation without experiencing the ER-Golgi trafficking, thereby activating the downstream NF-κB signaling pathway and facilitating a burst of cytokine release. Furthermore, we show that ORF8 deletion in SARS-CoV-2 attenuates inflammation and yields less lung lesions in hamsters. Our data collectively highlights a role of ORF8 protein in the development of cytokine storms during SARS-CoV-2 infection.


Assuntos
COVID-19 , Síndrome da Liberação de Citocina , SARS-CoV-2 , Proteínas Virais , Humanos , COVID-19/patologia , Síndrome da Liberação de Citocina/patologia , Inflamação , Fases de Leitura Aberta , SARS-CoV-2/fisiologia , Proteínas Virais/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(12): e2122708119, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35298333

RESUMO

SignificanceHatching from the zona pellucida is a prerequisite for embryo implantation and is less likely to occur in vitro for reasons unknown. Extracellular vesicles (EVs) are secreted by the embryo into the culture medium. Yet the role that embryonic EVs and their cargo microRNAs (miRNAs) play in blastocyst hatching has not been elucidated, partially due to the difficulties of isolating them from low amounts of culture medium. Here, we optimized EV-miRNA isolation from medium conditioned by individually cultured bovine embryos and subsequently showed that miR-378a-3p, which was up-regulated in EVs secreted by blastocysts, plays a crucial role in promoting blastocyst hatching. This demonstrates the regulatory effect of miR-378-3p on hatching, which is an established embryo quality parameter linked with implantation.


Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Blastocisto , Bovinos , Meios de Cultura , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Vesículas Extracelulares/genética , MicroRNAs/genética
3.
Reproduction ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063339

RESUMO

MicroRNAs (miRNAs), which can be carried inside extracellular vesicles (EVs), play a crucial role in regulating embryo development up to the blastocyst stage. Yet, the molecular mechanisms underlying blastocyst development and quality are largely unknown. Recently, our group identified 69 differentially expressed miRNAs in extracellular vesicles (EVs) isolated from culture medium conditioned by bovine embryos that either developed to the blastocyst stage or did not (non-blastocysts). We found miR-146b to be more abundant in the EVs derived from media conditioned by non-blastocyst embryos. Using RT-qPCR, we here confirmed the upregulation of miR-146b in non-blastocyst (arrested at 2-4 cell and morula stage) embryos compared to blastocysts (p<0.005), which coincides with the upregulation of miR-146b in EVs derived from the medium of these non-blastocysts. To evaluate a functional effect, bovine embryo culture media were supplemented with miR-146b mimics, resulting in significantly decreased embryo quality, with lower blastocyst rates at day 7 and lower total cell numbers, while the opposite was found after supplementation with miR-146b inhibitors, which resulted in reduced apoptosis rates (P < 0.01). Transcriptomic analysis of embryos treated with miR-146b mimics or inhibitors showed differential expression (P < 0.01) of genes associated with apoptosis, cell differentiation, and the RNA Pol II transcription complex, including WDR36, MBNL2, ERCC6l2, PYGO1, and SNIP1. Overall, miR-146b is overexpressed in non-blastocyst embryos and in EVs secreted by these embryos, and it regulates genes involved in embryo development and apoptosis, resulting in decreased embryo quality.

4.
EMBO Rep ; 22(9): e52252, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34288348

RESUMO

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb) that places a heavy strain on public health. Host susceptibility to Mtb is modulated by macrophages, which regulate the balance between cell apoptosis and necrosis. However, the role of molecular switches that modulate apoptosis and necrosis during Mtb infection remains unclear. Here, we show that Mtb-susceptible mice and TB patients have relatively low miR-342-3p expression, while mice with miR-342-3p overexpression are more resistant to Mtb. We demonstrate that the miR-342-3p/SOCS6 axis regulates anti-Mtb immunity by increasing the production of inflammatory cytokines and chemokines. Most importantly, the miR-342-3p/SOCS6 axis participates in the switching between Mtb-induced apoptosis and necrosis through A20-mediated K48-linked ubiquitination and RIPK3 degradation. Our findings reveal several strategies by which the host innate immune system controls intracellular Mtb growth via the miRNA-mRNA network and pave the way for host-directed therapies targeting these pathways.


Assuntos
MicroRNAs , Mycobacterium tuberculosis , Tuberculose , Animais , Morte Celular , Humanos , Inflamação/genética , Camundongos , MicroRNAs/genética , Mycobacterium tuberculosis/genética , Proteínas Supressoras da Sinalização de Citocina , Tuberculose/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37108081

RESUMO

In the last decade, in vitro embryo production in horses has become an established clinical practice, but blastocyst rates from vitrified equine oocytes remain low. Cryopreservation impairs the oocyte developmental potential, which may be reflected in the messenger RNA (mRNA) profile. Therefore, this study aimed to compare the transcriptome profiles of metaphase II equine oocytes vitrified before and after in vitro maturation. To do so, three groups were analyzed with RNA sequencing: (1) fresh in vitro matured oocytes as a control (FR), (2) oocytes vitrified after in vitro maturation (VMAT), and (3) oocytes vitrified immature, warmed, and in vitro matured (VIM). In comparison with fresh oocytes, VIM resulted in 46 differentially expressed (DE) genes (14 upregulated and 32 downregulated), while VMAT showed 36 DE genes (18 in each category). A comparison of VIM vs. VMAT resulted in 44 DE genes (20 upregulated and 24 downregulated). Pathway analyses highlighted cytoskeleton, spindle formation, and calcium and cation ion transport and homeostasis as the main affected pathways in vitrified oocytes. The vitrification of in vitro matured oocytes presented subtle advantages in terms of the mRNA profile over the vitrification of immature oocytes. Therefore, this study provides a new perspective for understanding the impact of vitrification on equine oocytes and can be the basis for further improvements in the efficiency of equine oocyte vitrification.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Transcriptoma , Cavalos/genética , Animais , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/metabolismo , Criopreservação/veterinária , Criopreservação/métodos , Vitrificação
6.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047535

RESUMO

While human in vitro embryo production is generally performed individually, animal models have shown that culturing embryos in groups improves blastocyst yield and quality. Paracrine embryotrophins could be responsible for this improved embryo development, but their identity remains largely unknown. We hypothesize that supplementation of embryotrophic proteins to a culture medium could be the key to improve individual embryo production. In this study, proteomics screening of culture media conditioned by bovine embryos revealed cathepsin-L as being secreted by both excellent- and good-quality embryos, while being absent in the medium conditioned by poor-quality embryos. The embryotrophic role of cathepsin-L was explored in vitro, whereby bovine zygotes were cultured individually for 8 days with or without cathepsin-L. Preliminary dose-response experiments pointed out 100 ng/mL as the optimal concentration of cathepsin-L in embryo culture medium. Supplementation of cathepsin-L to individual culture systems significantly improved blastocyst development and quality in terms of blastocoel formation at day 7, and the hatching ratio and apoptotic cell ratio at day 8, compared to the control. Taken together, cathepsin-L acts as an important embryotrophin by increasing embryo quality, and regulating blastulation and hatching in bovine in vitro embryo production.


Assuntos
Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Bovinos , Animais , Humanos , Zigoto , Blastocisto/metabolismo , Catepsinas/metabolismo , Meios de Cultura/farmacologia , Meios de Cultura/metabolismo , Fertilização in vitro
7.
Int J Mol Sci ; 22(2)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33430094

RESUMO

Extracellular vesicles (EVs) have been isolated from follicular (FF) and ampullary oviduct fluid (AOF), using different isolation methods. However, it is not clear whether different purification methods can affect the functionality of resulting EVs. Here, we compared two methods (OptiPrep™ density gradient ultracentrifugation (ODG UC) and single-step size exclusion chromatography (SEC) (qEV IZON™ single column)) for the isolation of EVs from bovine FF and AOF. Additionally, we evaluated whether the addition of EVs derived either by ODG UC or SEC from FF or AOF during oocyte maturation would yield extra benefits for embryo developmental competence. The characterization of EVs isolated using ODG UC or SEC from FF and AOF did not show any differences in terms of EV sizes (40-400 nm) and concentrations (2.4 ± 0.2 × 1012-1.8 ± 0.2 × 1013 particles/mL). Blastocyst yield and quality was higher in groups supplemented with EVs isolated from FF and AOF by ODG UC, with higher total cell numbers and a lower apoptotic cell ratio compared with the other groups (p < 0.05). Supplementing in vitro maturation media with EVs derived by ODG UC from AOF was beneficial for bovine embryo development and quality.


Assuntos
Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/genética , Vesículas Extracelulares/metabolismo , Oogênese/efeitos dos fármacos , Animais , Blastocisto/efeitos dos fármacos , Bovinos , Centrifugação com Gradiente de Concentração , Meios de Cultivo Condicionados , Feminino , Líquido Folicular/química , Líquido Folicular/metabolismo , Células Ciliadas da Ampola/química , Células Ciliadas da Ampola/metabolismo , Humanos , Oviductos/efeitos dos fármacos
8.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32331414

RESUMO

Extracellular vesicles (EVs) have been identified as one of the communication mechanisms amongst embryos. They are secreted into the embryo culture medium and, as such, represent a source of novel biomarkers for identifying the quality of cells and embryos. However, only small amounts of embryo-conditioned medium are available, which represents a challenge for EV enrichment. Our aim is to assess the suitability of different EV separation methods to retrieve EVs with high specificity and sufficient efficiency. Bovine embryo-conditioned medium was subjected to differential ultracentrifugation (DU), OptiPrepTM density gradient (ODG) centrifugation, and size exclusion chromatography. Separated EVs were characterized by complementary characterization methods, including Western blot, electron microscopy, and nanoparticle tracking analysis, to assess the efficiency and specificity. OptiPrepTM density gradient centrifugation outperformed DU and SEC in terms of specificity by substantial removal of contaminating proteins such as ribonucleoprotein complexes (Argonaute-2 (AGO-2)) and lipoproteins (ApoA-I) from bovine embryo-derived EVs (density: 1.02-1.04, 1.20-1.23 g/mL, respectively). In conclusion, ODG centrifugation is the preferred method for identifying EV-enriched components and for improving our understanding of EV function in embryo quality and development.


Assuntos
Meios de Cultivo Condicionados/metabolismo , Embrião de Mamíferos/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Bovinos , Centrifugação com Gradiente de Concentração , Fracionamento Químico/métodos , Cromatografia em Gel , Técnicas de Cultura Embrionária , Vesículas Extracelulares/ultraestrutura , Frações Subcelulares , Ultracentrifugação
9.
Int J Mol Sci ; 20(1)2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30577682

RESUMO

Extracellular vesicles (EVs) play a possible role in cell⁻cell communication and are found in various body fluids and cell conditioned culture media. The aim of this study was to isolate and characterize EVs in culture medium conditioned by bovine embryos in group and to verify if these EVs are functionally active. Initially, ultracentrifuged bovine serum albumin (BSA) containing medium was selected as suitable EV-free embryo culture medium. Next, EVs were isolated from embryo conditioned culture medium by OptiPrepTM density gradient ultracentrifugation. Isolated EVs were characterized by nanoparticle tracking analysis, western blotting, transmission, and immunoelectron microscopy. Bovine embryo-derived EVs were sizing between 25⁻230 nm with an average concentration of 236.5 ± 1.27 × 108 particles/mL. Moreover, PKH67 EV pre-labeling showed that embryo-secreted EVs were uptaken by zona-intact bovine embryos. Since BSA did not appear to be a contaminating EV source in culture medium, EV functionality was tested in BSA containing medium. Individual embryo culture in BSA medium enriched with EVs derived from conditioned embryo culture medium showed significantly higher blastocyst rates at day 7 and 8 together with a significantly lower apoptotic cell ratio. In conclusion, our study shows that EVs play an important role in inter embryo communication during bovine embryo culture in group.


Assuntos
Fracionamento Celular , Meios de Cultivo Condicionados/metabolismo , Vesículas Extracelulares/metabolismo , Animais , Bovinos , Fracionamento Celular/métodos , Centrifugação com Gradiente de Concentração , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Vesículas Extracelulares/ultraestrutura
10.
Zygote ; 25(3): 383-389, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28592345

RESUMO

The exposure of oocytes to heat stress during the maturation process results in harmful effects to their internal organelles, low fertilization capability and higher embryonic losses. In the present experiment the effect of heat shock (HS) during the maturation process was assessed. In Assay 1, oocytes from winter (December-March; n = 100) and summer (June-September; n = 100) months were collected and matured to analyse their HS tolerance. Total RNA was extracted from matured oocytes and cDNA synthesis was performed, followed by qPCR for selected genes (Cx43, CDH1, DNMT1, HSPA14), compared with two reference genes (GAPDH and SDHA). In Assay 2, oocytes collected during the winter were subjected to kinetic HS by stressing them at 39.5°C for 6, 12, 18 or 24 h and were afterwards matured at control temperature (38.5°C), and subsequently subjected to the previously described gene analysis procedure. Results of Assay 1 show that summer-collected oocytes exhibited lower maturation rate than winter-collected oocytes, which may be due to the down-regulation of the HSPA 14 gene. Assay 2 showed that 6 h of HS had no effect on gene regulation. CDH1 and DNMT1 up-regulation was observed starting at 12 h, which may represent the effect of heat shock on oocyte development.


Assuntos
Regulação da Expressão Gênica , Resposta ao Choque Térmico , Oócitos/fisiologia , Animais , Caderinas/genética , Bovinos , Conexina 43/genética , DNA (Citosina-5-)-Metiltransferase 1/genética , Feminino , Proteínas de Choque Térmico HSP70/genética , Técnicas de Maturação in Vitro de Oócitos/métodos , Estações do Ano
11.
Reprod Fertil Dev ; 29(1): 66-83, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28278795

RESUMO

In vitro, efficient communication between mammalian embryos in groups or between embryos and cocultured somatic cells implies that there is a sender, a message and a receiver that is able to decode the message. Embryos secrete a variety of autocrine and paracrine factors and, of these, extracellular vesicles have recently been implicated as putative messengers in embryo-embryo communication, as well as in communication of the embryo with the maternal tract. Extracellular vesicles (EVs) are membrane-bound vesicles that are found in biofluids and in culture media conditioned by the presence of embryos or cells. EVs carry and transfer regulatory molecules, such as microRNAs, mRNAs, lipids and proteins. We conducted a systematic search of the literature to review and present the currently available evidence regarding the possible roles of EVs in in vitro embryo communication and embryo development. It is important to note that there is limited information available on the molecular mechanisms and many of the biologically plausible functions of EVs in embryo communication have not yet been substantiated by conclusive experimental evidence. However, indirect evidence, such as the use of media conditioned by embryos or by somatic cells with improved embryo development as a result, may indicate that EVs can be an important asset for the development of tailor-made media, allowing better embryo development in vitro, even for single embryo culture.

12.
Zygote ; 24(5): 748-59, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27019120

RESUMO

Three assays were performed. In assay 1, oocytes harvested during the winter months were subjected to kinetic heat shock by stressing the oocytes at 39.5°C (HS1) or at 40.5°C (HS2) for either 6, 12, 18 or 24 h and then matured at control temperature (38.5°C). The nuclear maturation rates (NMR) of all oocytes were recorded after 24 h. In assay 2, oocytes collected year-round maturated, were implanted via in vitro fertilization (IVF) and developed for 9 days. Gene expression analysis was performed on target genes (Cx43, CDH1, DNMT1, HSPA14) with reference to the two housekeeping genes (GAPDH and SDHA) in embryos. Similarly, in assay 3, genetic analysis was performed on the embryos produced from heat-stressed oocytes (from HS1 and HS2). In assay 1, the duration of heat stress resulted in a significant decline in NMR (P < 0.05) with HS1 for maturated oocytes at 86.4 ± 4.3; 65.5 ± 0.7; 51.3 ± 0.9; 38.1 ± 1.9 and 36.3 ± 0.9, for control, 6 h, 12 h, 18 h and 24 h, respectively. For assays 2 and 3, results demonstrated that DNMT1, Cx43 and HSPA14 were down-regulated in the embryos produced in the warm with respect to the cold months (P < 0.05). A constant up- and down-regulation of DNMT1 and HSPA14 genes were observed in both HS-treated samples. Also, an inconsistent pattern of gene expression was observed in Cx43 and CDH1 genes (P < 0.05). Targeted gene expression was aberrant in embryo development, which can provide evidence on early embryo arrest and slowed embryo development.


Assuntos
Blastocisto/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Resposta ao Choque Térmico/fisiologia , Técnicas de Maturação in Vitro de Oócitos/métodos , Oócitos/fisiologia , Animais , Caderinas/genética , Bovinos , Conexina 43/genética , DNA (Citosina-5-)-Metiltransferases/genética , Feminino , Fertilização in vitro , Proteínas de Choque Térmico HSP70/genética , Masculino , Mórula/fisiologia , Estações do Ano
13.
Asian-Australas J Anim Sci ; 28(3): 334-42, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25656191

RESUMO

The present study was designed to evaluate how environmental factors in a dry-summer subtropical climate in Terceira-Azores (situated in the North Atlantic Ocean: 38° 43' N 27° 12' W) can affect dairy cow (Holstein) fertility, as well as seasonal influence on in vitro oocytes maturation and embryos development. Impact of heat shock (HS) effects on in vitro oocyte's maturation and further embryo development after in vitro fertilization (IVF) was also evaluated. For such purpose the result of the first artificial insemination (AI) performed 60 to 90 days after calving of 6,300 cows were recorded for one year. In parallel, climatic data was obtained at different elevation points (n = 5) from 0 to 1,000 m and grazing points from 0 to 500 m, in Terceira island, and the temperature humidity index (THI) was calculated. For in vitro experiments, oocytes (n = 706) were collected weekly during all year, for meiotic maturation and IVF. Further, to evaluate HS effect, 891 oocytes were collected in the cold moths (December, January, February and March) and divided in three groups treated to HS for 24 h during in vitro maturation at: C (Control = 38.5°C), HS1 (39.5°C) and HS2 (40.5°C). Oocytes from each group were used for meiotic assessment and IVF. Cleavage, morula and blastocyst development were evaluated respectively on day 2, 6, and 9 after IVF. A negative correlation between cow's conception rate (CR) and THI in grazing points (-91.3%; p<0.001) was observed. Mean THI in warmer months (June, July, August and September) was 71.7±0.7 and the CR (40.2±1.5%) while in cold months THI was 62.8±0.2 and CR was 63.8±0.4%. A similar impact was obtained with in vitro results in which nuclear maturation rate (NMR) ranged from 78.4% (±8.0) to 44.3% (±8.1), while embryos development ranged from 53.8% (±5.8) to 36.3% (±3.3) in cold and warmer months respectively. In vitro HS results showed a significant decline (p<0.05) on NMR of oocytes for every 1°C rising temperature (78.4±8.0, 21.7±3.1 and 8.9±2.2, respectively for C, HS1, and HS2). Similar results were observed in cleavage rate and embryo development, showing a clear correlation (96.9 p<0.05) between NMR and embryo development with respect to temperatures. Results clearly demonstrated that, up to a THI of 70.6, a decrease in the CR occurs in first AI after calving; this impairment was confirmed with in vitro results.

14.
J Anim Sci Biotechnol ; 15(1): 23, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424649

RESUMO

Transfer RNA-derived small RNAs (tsRNAs) have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells. However, it is unknown whether tsRNAs also regulate embryo hatching. In this study, we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA (miRNA) cargo of preimplantation embryonic extracellular vesicles (EVs) influences embryo development. We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts. The majority of tsRNAs was identified as tRNA halves originating from the 5´ ends of tRNAs. Among the 148 differentially expressed tsRNAs, the 19 nt tRNA fragment (tRF) tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts. RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group (P < 0.05). Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching (P < 0.05). Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation. In summary, tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions, and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching, while influencing embryo implantation-related genes and pathways. These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.

15.
Anim Reprod Sci ; : 107535, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38880667

RESUMO

This review focuses on the mechanisms of immune tolerance and antimicrobial defense in the male genital tract of the pig. Sperm cells are foreign to the immune system and, therefore, they must be protected from the immune system. The blood-testis-barrier is mediated by a physical barrier between adjacent Sertoli cells, several cell types within the testis, and interactions between immunomodulatory molecules. The blood-epididymal-barrier is composed of a physical barrier that is lined with principal cells having a network of junctional complexes in their apical lateral membrane and completed by specific transporters. The seminal plasma (SP) contains many signaling agents involved in establishing a state of immune tolerance in the female genital tract, which is essential for successful fertilization. Specific SP-proteins, however, also have pro-inflammatory capacities contributing to transient uterine inflammation, supporting the removal of foreign cells, possible pathogens, and excessive spermatozoa. While many different proteins and other substances present in semen can damage sperm cells, they may also protect them against viral infections. A delicate balance of these substances, therefore, needs to be maintained. Related to this, recent studies have shown the importance of extracellular vesicles (EVs), as they contain these substances and convey immune signals. Yet, viruses may use EVs to interact with the male genital tract and circumvent immune responses. For this reason, further research needs to explore the role of EVs in the male reproductive tract, as it might contribute to elucidating the pathogenesis of viral infections that might be transmitted via semen and to developing better vaccines.

16.
Theriogenology ; 226: 87-94, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38870583

RESUMO

Small non-coding RNAs (sncRNAs) present in the conditioned medium (CM) of bovine preimplantation embryos are potential noninvasive biomarkers for assessing embryo quality. Accurate quantification of sncRNA levels in the spent CM is of utmost importance in this regard. RT-qPCR is considered as the gold standard for quantifying RNA. In order to standardize RT-qPCR data in the sample type under investigation, the use of suitable stable sncRNAs is essential. Here, we selected 10 sncRNAs from small RNA sequencing of CM samples derived from both bovine blastocysts and degenerate embryos, and evaluated their expression stability together with that of cel-miR-39 as a spike and the often-used U6 small nuclear RNA at different embryo developmental stages. In CM of 2-cell embryos, rsRNA-1044 showed the most stable expression, while tDR-1:32-Gly-CCC-1 was the most stable expressed sncRNA in CM of the stages beyond the 2-cell stage. Next, tDR-1:32-Gly-CCC-1 was used for normalizing the RT-qPCR data from the CM of blastocysts and degenerate embryos. Bta-miR-155 and tDR-39:75-Arg-CCG-2 were found to be significantly up-regulated in the CM of blastocysts compared to that of the degenerated embryos (P = 0.028 and P = 0.017, respectively), suggesting their expression levels are related to embryo development stage. In conclusion, tDR-1:32-Gly-CCC-1 can serve as a suitable reference sncRNA for normalization of RT-qPCR data of the CM from bovine blastocysts.

17.
Reprod Biol ; 24(2): 100888, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749271

RESUMO

High levels of reactive oxygen species (ROS) derived from in vitro conditions compromise oocyte quality and subsequent polyspermy prevention by the zona and membrane block. Antioxidant supplementation, like lycopene, during in vitro maturation (IVM) mitigates ROS effects, yet, its efficacy in blocking polyspermy remains uncertain. This study aims to evaluate the effect of lycopene supplementation during IVM on oocyte maturation, fertilization, and developmental parameters. To this end, bovine oocytes were supplemented with 0.2 µM lycopene and fertilized with semen from three bulls. The three bulls showed different fertilization potential in vitro, with bull 1 showing the highest penetration and polyspermy rates and the lowest in vitro fertilization (IVF) efficiency. Interestingly, in bull 1, the treatment with lycopene improved IVF efficiency (p = 0.043) and reduced the polyspermy rate (p = 0.028). However, none of these effects were observed in bulls 2 and 3. Bulls with higher penetration rates exhibited better blastocyst rates although those rates did not seem to be associated with polyspermy or IVF efficiency. Oocyte mitochondrial distribution and activity and cortical granule migration and distribution were not influenced by lycopene. In conclusion, we demonstrated that lycopene addition during oocyte maturation had a positive impact on IVF efficiency by reducing polyspermy rates in a bull-dependent manner. The reduction in polyspermy rates was not caused by changes in cortical granule migration or oocyte mitochondrial distribution. Lycopene must therefore induce other changes in the oocyte that lower the in vitro penetration rates of specific bulls prone to polyspermy.


Assuntos
Antioxidantes , Fertilização in vitro , Técnicas de Maturação in Vitro de Oócitos , Licopeno , Oócitos , Animais , Licopeno/farmacologia , Bovinos , Masculino , Fertilização in vitro/veterinária , Fertilização in vitro/métodos , Técnicas de Maturação in Vitro de Oócitos/veterinária , Técnicas de Maturação in Vitro de Oócitos/métodos , Feminino , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Fertilização/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Espermatozoides/fisiologia
18.
Comput Biol Med ; 168: 107785, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38056209

RESUMO

Cumulus expansion is an important indicator of oocyte maturation and has been suggested to be indicative of greater oocyte developmental capacity. Although multiple methods have been described to assess cumulus expansion, none of them is considered a gold standard. Additionally, these methods are subjective and time-consuming. In this manuscript, the reliability of three cumulus expansion measurement methods was assessed, and a deep learning model was created to automatically perform the measurement. Cumulus expansion of 232 cumulus-oocyte complexes was evaluated by three independent observers using three methods: (1) measurement of the cumulus area, (2) measurement of three distances between the zona pellucida and outer cumulus, and (3) scoring cumulus expansion on a 5-point Likert scale. The reliability of the methods was calculated in terms of intraclass-correlation coefficients (ICC) for both inter- and intra-observer agreements. The area method resulted in the best overall inter-observer agreement with an ICC of 0.89 versus 0.54 and 0.30 for the 3-distance and scoring methods, respectively. Therefore, the area method served as the base to create a deep learning model, AI-xpansion, which reaches a human-level performance in terms of average rank, bias and variance. To evaluate the accuracy of the methods, the results of cumulus expansion calculations were linked to embryonic development. Cumulus expansion had increased significantly in oocytes that achieved successful embryo development when measured by AI-xpansion, the area- or 3-distance method, while this was not the case for the scoring method. Measuring the area is the most reliable method to manually evaluate cumulus expansion, whilst deep learning automatically performs the calculation with human-level precision and high accuracy and could therefore be a valuable prospective tool for embryologists.


Assuntos
Aprendizado Profundo , Feminino , Humanos , Animais , Bovinos , Reprodutibilidade dos Testes , Células do Cúmulo , Oócitos , Desenvolvimento Embrionário
19.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894282

RESUMO

Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.

20.
Sci Rep ; 13(1): 4765, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959320

RESUMO

Embryo development is a dynamic process and critical stages may go unnoticed with the use of traditional morphologic assessments, especially the timing of embryonic divisions and aberrant zygotic cleavage patterns. Bovine embryo development is impaired after oocyte vitrification, but little is known about the underlying morphokinetic behavior. Here, bovine zygotes from fresh (n = 708) and vitrified oocytes (n = 182) were monitored by time-lapse imaging and the timing and nature of early blastomere divisions were modeled to find associations with blastocyst development at day 8. The predictive potential of morphokinetic parameters was analyzed by logistic regression and receiver operating characteristic curve analysis to determine optimal cut-off values. Lag-phase was highly correlated with embryo development. Remarkably, 100% of zygotes that reached the blastocyst stage showed a lag-phase. Fast first cleavage increased the chance of blastocyst development to 30% with a cut-off of 32 h and 22 min. Aberrant zygotic cleavage events, including multipolar division, unequal blastomere sizes, and membrane ruffling resulted in decreased blastocyst development. Multipolar division leads to uneven blastomeres, which was associated with anuclear and multinuclear blastomeres, indicating genome segregation errors. Moreover, we described for the first time morphokinetics of embryos derived from vitrified bovine oocytes. Vitrification severely affected blastocyst development, although lower cryoprotectant concentration in equilibration solutions seems to be less detrimental for embryo yield. Impaired development was linked to slow cleavages, lower lag-phase incidence, and increased early embryonic arrest. Typically, less than 15% of the embryos produced from vitrified oocytes reached more than eight cells. Interestingly, the rate of abnormal first cleavage events was not affected by oocyte vitrification. In conclusion, time to first cleavage, the presence of a lag-phase, and the absence of aberrant zygotic cleavage were the best predictors of bovine blastocyst development for both fresh and vitrified oocytes.


Assuntos
Desenvolvimento Embrionário , Oócitos , Animais , Bovinos , Desenvolvimento Embrionário/genética , Embrião de Mamíferos , Blastocisto , Vitrificação , Criopreservação/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA