Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Molecules ; 27(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36500481

RESUMO

A rapid, cheap and feasible new approach was used to synthesize the Mg0.375Fe0.375Al0.25-LDH in the presence of tetramethylammonium hydroxide (TMAH), as a nontraditional hydrolysis agent, applying both mechano-chemical (MC) and co-precipitation methods (CP). For comparison, these catalysts were also synthesized using traditional inorganic alkalis. The mechano-chemical method brings several advantages since the number of steps and the energy involved are smaller than in the co-precipitation method, while the use of organic alkalis eliminates the possibility of contaminating the final solid with alkaline cations. The memory effect was also investigated. XRD studies showed Fe3O4 as stable phase in all solids. Regardless of the alkalis and synthesis methods used, the basicity of catalysts followed the trend: mixed oxides > parent LDH > hydrated LDH. The catalytic activity of the catalysts in the Claisen−Schmidt condensation between benzaldehyde and cyclohexanone showed a linear dependence to the basicity values. After 2 h, the calcined sample cLDH-CO32−/OH−-CP provided a conversion value of 93% with a total selectivity toward 2,6-dibenzylidenecyclohexanone. The presence of these catalysts in the reaction media inhibited the oxidation of benzaldehyde to benzoic acid. Meanwhile, for the self-condensation of cyclohexanone, the conversions to mono- and di-condensed compounds did not exceed 3.8%.


Assuntos
Óxidos , Catálise , Oxirredução
2.
Faraday Discuss ; 206: 535-547, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28930329

RESUMO

This study reports the behaviour of SCILL based catalysts in the oxidative S-S coupling of aliphatic and aromatic thiols, namely 1-butanethiol and thiophenol, to dibutyl disulfide and diphenyl disulfide. A range of ionic liquids (1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) and metal supported catalysts (5% Pt/SiO2; 5% Ru/SiO2; 5% Ru/C; 5% Pt/OMS-2) were used to prepare the SCILL catalysts and all were found to be active for the reaction following the trend 5% Pt-OMS-2 > 5% Pt/SiO2 > 5% Ru/C > 5% Ru/SiO2. The presence of SCILL catalysts afforded high selectivity to the disulfide, and the activity of the SCILL catalyst was dependent on the ionic liquid used. A significant increase in the stability of all the supported metal catalysts was found in the presence of the ionic liquid, and there was no change in the selectivity towards disulfides. This demonstrated that the ionic liquids protect the active sites of the catalyst against sulfation, thus providing more stable and active catalysts.

4.
Materials (Basel) ; 12(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841502

RESUMO

This study deals with the behavior of molybdenum⁻vanadium (Mo/V) mixed oxides catalysts in both disproportionation and selective oxidation of toluene. Samples containing different Mo/V ratios were prepared by a modified method using tetradecyltrimethylammonium bromide and acetic acid. The catalysts were characterized using several techniques: nitrogen adsorption⁻desorption isotherms, X-Ray diffraction (XRD), ammonia temperature-programmed desorption (TPD-NH3), temperature-programmed reduction by hydrogen (H2-TPR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, Fourier-transform infrared-spectroscopy (FTIR) and ultraviolet-visible spectroscopies (UV⁻VIS). The XRD results evidenced the presence of orthorhombic α-MoO3 and V2O5 phases, as well as monoclinic ß-MoO3 and V2MoO8 phases, their abundance depending on the Mo to V ratio, while the TPD-NH3 emphasized that, the total amount of the acid sites diminished with the increase of the Mo loading. The TPR investigations indicated that the samples with higher Mo/V ratio possess a higher reducibility. The main findings of this study led to the conclusion that the presence of strong acid sites afforded a high conversion in toluene disproportionation (Mo/V = 1), while a higher reducibility is a prerequisite to accomplishing high conversion in toluene oxidation (Mo/V = 2). The catalyst with Mo/V = 1 acquires the best yield to xylenes from the toluene disproportionation reaction, while the catalyst with Mo/V = 0.33 presents the highest yield to benzaldehyde.

5.
Chem Commun (Camb) ; 52(9): 1839-42, 2016 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-26670136

RESUMO

Graphene oxide catalyzes oxidation by NaClO of primary benzyl and aliphatic amines to a product distribution comprising nitriles and imines. Nitriles are the sole product for long chain aliphatic amines. Spectroscopic characterization suggests that percarboxylic and perlactone groups could be the active sites of the process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA