Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(39): 15488-15493, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31525873

RESUMO

Four decades after the first (and only) reported synthesis of kekulene, this emblematic cycloarene has been obtained again through an improved route involving the construction of a key synthetic intermediate, 5,6,8,9-tetrahydrobenzo[m]tetraphene, by means of a double Diels-Alder reaction between styrene and a versatile benzodiyne synthon. Ultra-high-resolution AFM imaging of single molecules of kekulene and computational calculations provide additional support for a molecular structure with a significant degree of bond localization in accordance with the resonance structure predicted by the Clar model.

2.
Angew Chem Int Ed Engl ; 57(15): 3888-3908, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29485190

RESUMO

Using scanning probe microscopy techniques, at low temperatures and in ultrahigh vacuum, individual molecules adsorbed on surfaces can be probed with ultrahigh resolution to determine their structure and details of their conformation, configuration, charge states, aromaticity, and the contributions of resonance structures. Functionalizing the tip of an atomic force microscope with a CO molecule enabled atomic-resolution imaging of single molecules, and measurement of their adsorption geometry and bond-order relations. In addition, by using scanning tunneling microscopy and Kelvin probe force microscopy, the density of the molecular frontier orbitals and the electric charge distribution within molecules can be mapped. Combining these techniques yields a high-resolution tool for the identification and characterization of individual molecules. The single-molecule sensitivity and the possibility of atom manipulation to induce chemical reactions with the tip of the microscope open up unique applications in chemistry, and differentiate scanning probe microscopy from conventional methods for molecular structure elucidation. Besides being an aid for challenging cases in natural product identification, atomic force microscopy has been shown to be a powerful tool for the investigation of on-surface reactions and the characterization of radicals and molecular mixtures. Herein we review the progress that high-resolution scanning probe microscopy with functionalized tips has made for molecular structure identification and characterization, and discuss the challenges it will face in the years to come.

3.
Nano Lett ; 16(3): 1974-80, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26840626

RESUMO

Metal tips decorated with CO molecules have paved the way for an impressively high resolution in atomic force microscopy (AFM). Although Pauli repulsion and the associated CO tilting play a dominant role at short distances, experiments on polar and metallic systems show that electrostatic interactions are necessary to understand the complex contrast observed and its distance evolution. Attempts to describe those interactions in terms of a single electrostatic dipole replacing the tip have led to contradictory statements about its nature and strength. Here, we solve this puzzle with a comprehensive experimental and theoretical characterization of the AFM contrast on Cl vacancies. Our model, based on density functional theory (DFT) calculations, reproduces the complex evolution of the contrast between both the Na cation and Cl anion sites, and the positively charged vacancy as a function of tip height, and highlights the key contribution of electrostatic interactions for tip-sample distances larger than 500 pm. For smaller separations, Pauli repulsion and the associated CO tilting start to dominate the contrast. The electrostatic field of the CO-metal tip can be represented by the superposition of the fields from the metal tip and the CO molecule. The long-range behavior is defined by the metal tip that contributes the field of a dipole with its positive pole at the apex. At short-range, the CO exhibits an opposite field that prevails. The interplay of these fields, with opposite sign and rather different spatial extension, is crucial to describe the contrast evolution as a function of the tip height.

4.
J Am Chem Soc ; 137(23): 7424-8, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26004786

RESUMO

We study a thermally activated on-surface planarization reaction by a detailed analysis of the reactant and reaction products from atomically resolved atomic force microscopy (AFM) images and spectroscopy. The three-dimensional (3D) structure of the reactant, a helical diphenanthrene derivative, requires going beyond constant-height imaging. The characterization in three dimensions is enabled by acquisition and analysis of the AFM signal in a 3D data set. This way, the structure and geometry of nonplanar molecules as well as their reaction products on terraces and at step edges can be determined.

5.
Phys Rev Lett ; 110(13): 136101, 2013 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-23581345

RESUMO

We present spatially resolved vibronic spectroscopy of individual pentacene molecules in a double-barrier tunneling junction. It is observed that even for this effective single-level system the energy dissipation associated with electron attachment varies spatially by more than a factor of 2. This is in contrast to the usual treatment of electron-vibron coupling in the Franck-Condon picture. Our experiments unambiguously prove that the local symmetry of initial and final wave function determines the dissipation in electron transport.

6.
Phys Rev Lett ; 108(8): 086101, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22463545

RESUMO

We investigated dibenzo[a,h]thianthrene molecules adsorbed on ultrathin layers of NaCl using a combined low-temperature scanning tunneling and atomic force microscope. Two stable configurations exist corresponding to different isomers of free nonplanar molecules. By means of excitations from inelastic electron tunneling we can switch between both configurations. Atomic force microscopy with submolecular resolution allows unambiguous determination of the molecular geometry, and the pathway of the interconversion of the isomers. Our investigations also shed new light on contrast mechanisms in scanning tunneling microscopy.

7.
Phys Rev Lett ; 107(18): 186103, 2011 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-22107649

RESUMO

In chemistry and physics symmetry principles are all important, for example, leading to the selection rules governing optical transitions. We have investigated the influence of the molecular symmetry on the surface potential landscape of molecules in the limit of weak molecule-substrate binding. For this purpose, the induced lateral motion of Cu(II)-tetraazaphthalocyanine molecules, for which four symmetry distinct isomers exist, on NaCl(100) was studied by scanning tunneling microscopy. This nonthermal diffusion induced by inelastic excitations is found to be qualitatively different for all four symmetry distinct isomers, demonstrating that symmetry governs the surface potential landscape.

8.
Nat Chem ; 10(8): 853-858, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29967394

RESUMO

Rearrangements that change the connectivity of a carbon skeleton are often useful in synthesis, but it can be difficult to follow their mechanisms. Scanning probe microscopy can be used to manipulate a skeletal rearrangement at the single-molecule level, while monitoring the geometry of reactants, intermediates and final products with atomic resolution. We studied the reductive rearrangement of 1,1-dibromo alkenes to polyynes on a NaCl surface at 5 K, a reaction that resembles the Fritsch-Buttenberg-Wiechell rearrangement. Voltage pulses were used to cleave one C-Br bond, forming a radical, then to cleave the remaining C•-Br bond, triggering the rearrangement. These experiments provide structural insight into the bromo-vinyl radical intermediates, showing that the C=C•-Br unit is nonlinear. Long polyynes, up to the octayne Ph-(C≡C)8-Ph, have been prepared in this way. The control of skeletal rearrangements opens a new window on carbon-rich materials and extends the toolbox for molecular synthesis by atom manipulation.

9.
Nat Commun ; 9(1): 1198, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29568080

RESUMO

Antiaromatic and open-shell molecules are attractive because of their distinct electronic and magnetic behaviour. However, their increased reactivity creates a challenge for probing their properties. Here, we describe the on-surface and in-solution generation and characterisation of a highly reactive antiaromatic molecule: indeno[1,2-b]fluorene (IF). In solution, we generated IF by KI-induced dehalogenation of a dibromo-substituted precursor molecule and found that IF survives for minutes at ambient conditions. Using atom manipulation at low temperatures we generated IF on Cu(111) and on bilayer NaCl. On these surfaces, we characterised IF by bond-order analysis using non-contact atomic force microscopy with CO-functionalised tips and by orbital imaging using scanning tunnelling microscopy. We found that the closed-shell configuration and antiaromatic character predicted for gas-phase IF are preserved on the NaCl film. On Cu(111), we observed significant bond-order reorganisation within the s-indacene moiety because of chemisorption, highlighting the importance of molecule surface interactions on the π-electron distribution.

10.
Nat Nanotechnol ; 12(4): 308-311, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28192389

RESUMO

Triangulene, the smallest triplet-ground-state polybenzenoid (also known as Clar's hydrocarbon), has been an enigmatic molecule ever since its existence was first hypothesized. Despite containing an even number of carbons (22, in six fused benzene rings), it is not possible to draw Kekulé-style resonant structures for the whole molecule: any attempt results in two unpaired valence electrons. Synthesis and characterization of unsubstituted triangulene has not been achieved because of its extreme reactivity, although the addition of substituents has allowed the stabilization and synthesis of the triangulene core and verification of the triplet ground state via electron paramagnetic resonance measurements. Here we show the on-surface generation of unsubstituted triangulene that consists of six fused benzene rings. The tip of a combined scanning tunnelling and atomic force microscope (STM/AFM) was used to dehydrogenate precursor molecules. STM measurements in combination with density functional theory (DFT) calculations confirmed that triangulene keeps its free-molecule properties on the surface, whereas AFM measurements resolved its planar, threefold symmetric molecular structure. The unique topology of such non-Kekulé hydrocarbons results in open-shell π-conjugated graphene fragments that give rise to high-spin ground states, potentially useful in organic spintronic devices. Our generation method renders manifold experiments possible to investigate triangulene and related open-shell fragments at the single-molecule level.

11.
ACS Nano ; 11(11): 10768-10773, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-29028295

RESUMO

We describe the generation of a meta-aryne at low temperature (T = 5 K) using atomic manipulation on Cu(111) and on bilayer NaCl on Cu(111). We observe different voltage thresholds for dehalogenation of the precursor and different reaction products depending on the substrate surface. The chemical structure is resolved by atomic force microscopy with CO-terminated tips, revealing the radical positions and confirming a diradical rather than an anti-Bredt olefin structure for this meta-aryne on NaCl.

12.
ACS Nano ; 10(5): 5340-5, 2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27111055

RESUMO

Aiming to study new motifs, potentially active as functional materials, we performed the synthesis of a naphthodiazaborinine (the BN isostere of the phenalenyl anion) that is bonded to a hindered di-ortho-substituted aryl system (9-anthracene). We used atomic force microscopy (AFM) and succeeded in both the verification of the original nonplanar structure of the molecule and the planarization of the skeleton by removing H atoms that cause steric hindrance. This study demonstrated that planarization by atomic manipulation is a possible route for extending molecular identification by AFM to nonplanar molecular systems that are difficult to probe with AFM directly.

13.
Nat Chem ; 8(3): 220-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26892552

RESUMO

The Bergman cyclization is one of the most fascinating rearrangements in chemistry, with important implications in organic synthesis and pharmacology. Here we demonstrate a reversible Bergman cyclization for the first time. We induced the on-surface transformation of an individual aromatic diradical into a highly strained ten-membered diyne using atomic manipulation and verified the products by non-contact atomic force microscopy with atomic resolution. The diyne and diradical were stabilized by using an ultrathin NaCl film as the substrate, and the diyne could be transformed back into the diradical. Importantly, the diradical and the diyne exhibit different reactivity, electronic, magnetic and optical properties associated with the changes in the bond topology, and spin multiplicity. With this reversible, triggered Bergman cyclization we demonstrated switching on demand between the two reactive intermediates by means of selective C-C bond formation or cleavage, which opens up the field of radical chemistry for on-surface reactions by atomic manipulation.

14.
ACS Nano ; 10(4): 4538-42, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26963892

RESUMO

We present the on-surface reduction of diepoxytetracenes to form genuine tetracene on Cu(111). The conversion is achieved by scanning tunneling microscopy (STM) tip-induced manipulation as well as thermal activation and is conclusively demonstrated by means of atomic force microscopy (AFM) with atomic resolution. We observe that the metallic surface plays an important role in the deoxygenation and for the planarization after bond cleavage.

15.
Nat Chem ; 7(8): 623-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26201737

RESUMO

Reactive intermediates are involved in many chemical transformations. However, their characterization is a great challenge because of their short lifetimes and high reactivities. Arynes, formally derived from arenes by the removal of two hydrogen atoms from adjacent carbon atoms, are prominent reactive intermediates that have been hypothesized for more than a century. Their rich chemistry enables a widespread use in synthetic chemistry, as they are advantageous building blocks for the construction of polycyclic compounds that contain aromatic rings. Here, we demonstrate the generation and characterization of individual polycyclic aryne molecules on an ultrathin insulating film by means of low-temperature scanning tunnelling microscopy and atomic force microscopy. Bond-order analysis suggests that a cumulene resonance structure is the dominant one, and the aryne reactivity is preserved at cryogenic temperatures. Our results provide important insights into the chemistry of these elusive intermediates and their potential application in the field of on-surface synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA