Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960302

RESUMO

The emergence of the edge computing paradigm has shifted data processing from centralised infrastructures to heterogeneous and geographically distributed infrastructures. Therefore, data processing solutions must consider data locality to reduce the performance penalties from data transfers among remote data centres. Existing big data processing solutions provide limited support for handling data locality and are inefficient in processing small and frequent events specific to the edge environments. This article proposes a novel architecture and a proof-of-concept implementation for software container-centric big data workflow orchestration that puts data locality at the forefront. The proposed solution considers the available data locality information, leverages long-lived containers to execute workflow steps, and handles the interaction with different data sources through containers. We compare the proposed solution with Argo workflows and demonstrate a significant performance improvement in the execution speed for processing the same data units. Finally, we carry out experiments with the proposed solution under different configurations and analyze individual aspects affecting the performance of the overall solution.


Assuntos
Big Data , Biologia Computacional , Armazenamento e Recuperação da Informação , Software , Fluxo de Trabalho
2.
J Biomed Inform ; 101: 103337, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31916973

RESUMO

Despite the recent developments in deep learning models, their applications in clinical decision-support systems have been very limited. Recent digitalisation of health records, however, has provided a great platform for the assessment of the usability of such techniques in healthcare. As a result, the field is starting to see a growing number of research papers that employ deep learning on electronic health records (EHR) for personalised prediction of risks and health trajectories. While this can be a promising trend, vast paper-to-paper variability (from data sources and models they use to the clinical questions they attempt to answer) have hampered the field's ability to simply compare and contrast such models for a given application of interest. Thus, in this paper, we aim to provide a comparative review of the key deep learning architectures that have been applied to EHR data. Furthermore, we also aim to: (1) introduce and use one of the world's largest and most complex linked primary care EHR datasets (i.e., Clinical Practice Research Datalink, or CPRD) as a new asset for training such data-hungry models; (2) provide a guideline for working with EHR data for deep learning; (3) share some of the best practices for assessing the "goodness" of deep-learning models in clinical risk prediction; (4) and propose future research ideas for making deep learning models more suitable for the EHR data. Our results highlight the difficulties of working with highly imbalanced datasets, and show that sequential deep learning architectures such as RNN may be more suitable to deal with the temporal nature of EHR.


Assuntos
Aprendizado Profundo , Registros Eletrônicos de Saúde , Previsões
3.
PLoS Med ; 15(11): e1002695, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30458006

RESUMO

BACKGROUND: Emergency admissions are a major source of healthcare spending. We aimed to derive, validate, and compare conventional and machine learning models for prediction of the first emergency admission. Machine learning methods are capable of capturing complex interactions that are likely to be present when predicting less specific outcomes, such as this one. METHODS AND FINDINGS: We used longitudinal data from linked electronic health records of 4.6 million patients aged 18-100 years from 389 practices across England between 1985 to 2015. The population was divided into a derivation cohort (80%, 3.75 million patients from 300 general practices) and a validation cohort (20%, 0.88 million patients from 89 general practices) from geographically distinct regions with different risk levels. We first replicated a previously reported Cox proportional hazards (CPH) model for prediction of the risk of the first emergency admission up to 24 months after baseline. This reference model was then compared with 2 machine learning models, random forest (RF) and gradient boosting classifier (GBC). The initial set of predictors for all models included 43 variables, including patient demographics, lifestyle factors, laboratory tests, currently prescribed medications, selected morbidities, and previous emergency admissions. We then added 13 more variables (marital status, prior general practice visits, and 11 additional morbidities), and also enriched all variables by incorporating temporal information whenever possible (e.g., time since first diagnosis). We also varied the prediction windows to 12, 36, 48, and 60 months after baseline and compared model performances. For internal validation, we used 5-fold cross-validation. When the initial set of variables was used, GBC outperformed RF and CPH, with an area under the receiver operating characteristic curve (AUC) of 0.779 (95% CI 0.777, 0.781), compared to 0.752 (95% CI 0.751, 0.753) and 0.740 (95% CI 0.739, 0.741), respectively. In external validation, we observed an AUC of 0.796, 0.736, and 0.736 for GBC, RF, and CPH, respectively. The addition of temporal information improved AUC across all models. In internal validation, the AUC rose to 0.848 (95% CI 0.847, 0.849), 0.825 (95% CI 0.824, 0.826), and 0.805 (95% CI 0.804, 0.806) for GBC, RF, and CPH, respectively, while the AUC in external validation rose to 0.826, 0.810, and 0.788, respectively. This enhancement also resulted in robust predictions for longer time horizons, with AUC values remaining at similar levels across all models. Overall, compared to the baseline reference CPH model, the final GBC model showed a 10.8% higher AUC (0.848 compared to 0.740) for prediction of risk of emergency admission within 24 months. GBC also showed the best calibration throughout the risk spectrum. Despite the wide range of variables included in models, our study was still limited by the number of variables included; inclusion of more variables could have further improved model performances. CONCLUSIONS: The use of machine learning and addition of temporal information led to substantially improved discrimination and calibration for predicting the risk of emergency admission. Model performance remained stable across a range of prediction time windows and when externally validated. These findings support the potential of incorporating machine learning models into electronic health records to inform care and service planning.


Assuntos
Mineração de Dados/métodos , Registros Eletrônicos de Saúde , Serviço Hospitalar de Emergência , Aprendizado de Máquina , Admissão do Paciente , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Inglaterra , Feminino , Necessidades e Demandas de Serviços de Saúde , Nível de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação das Necessidades , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Fatores Sexuais , Fatores Socioeconômicos , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA