Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 554(7693): 515-518, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29433125

RESUMO

Since the Industrial Revolution, the North Atlantic Ocean has been accumulating anthropogenic carbon dioxide (CO2) and experiencing ocean acidification, that is, an increase in the concentration of hydrogen ions (a reduction in pH) and a reduction in the concentration of carbonate ions. The latter causes the 'aragonite saturation horizon'-below which waters are undersaturated with respect to a particular calcium carbonate, aragonite-to move to shallower depths (to shoal), exposing corals to corrosive waters. Here we use a database analysis to show that the present rate of supply of acidified waters to the deep Atlantic could cause the aragonite saturation horizon to shoal by 1,000-1,700 metres in the subpolar North Atlantic within the next three decades. We find that, during 1991-2016, a decrease in the concentration of carbonate ions in the Irminger Sea caused the aragonite saturation horizon to shoal by about 10-15 metres per year, and the volume of aragonite-saturated waters to reduce concomitantly. Our determination of the transport of the excess of carbonate over aragonite saturation (xc[CO32-])-an indicator of the availability of aragonite to organisms-by the Atlantic meridional overturning circulation shows that the present-day transport of carbonate ions towards the deep ocean is about 44 per cent lower than it was in preindustrial times. We infer that a doubling of atmospheric anthropogenic CO2 levels-which could occur within three decades according to a 'business-as-usual scenario' for climate change-could reduce the transport of xc[CO32-] by 64-79 per cent of that in preindustrial times, which could severely endanger cold-water coral habitats. The Atlantic meridional overturning circulation would also export this acidified deep water southwards, spreading corrosive waters to the world ocean.


Assuntos
Ácidos/análise , Água do Mar/química , Movimentos da Água , Animais , Antozoários/química , Oceano Atlântico , Atmosfera/química , Carbonato de Cálcio/análise , Dióxido de Carbono/análise , Temperatura Baixa , Ecossistema , Concentração de Íons de Hidrogênio
2.
Environ Microbiol ; 25(2): 428-453, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36453153

RESUMO

Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPB.


Assuntos
Bactérias , Microbiota , Hibridização in Situ Fluorescente , Bactérias/metabolismo , Ferro/metabolismo , Microbiota/genética , Oxirredução
3.
Anal Chem ; 95(12): 5323-5330, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926836

RESUMO

Several mass spectrometry and spectroscopic techniques have been used in the search for molecular biomarkers on Mars. A major constraint is their capability to detect and identify large and complex compounds such as peptides or other biopolymers. Multiplex immunoassays can detect these compounds, but antibodies must be produced for a large number of sequence-dependent molecular targets. Ancestral Sequence Reconstruction (ASR) followed by protein "resurrection" in the lab can help to narrow the selection of targets. Herein, we propose an immunoanalytical method to identify ancient and universally conserved protein/peptide sequences as targets for identifying ancestral biomarkers in nature. We have developed, tested, and validated this approach by producing antibodies to eight previously described ancestral resurrected proteins (three ß-lactamases, three thioredoxins, one Elongation Factor Tu, and one RuBisCO, all of them theoretically dated as Precambrian), and used them as a proxy to search for any potential feature of them that could be present in current natural environments. By fluorescent sandwich microarray immunoassays (FSMI), we have detected positive immunoreactions with antibodies to the oldest ß-lactamase and thioredoxin proteins (ca. 4 Ga) in samples from a hydrothermal environment. Fine epitope mapping and inhibitory immunoassays allowed the identification of well-conserved epitope peptide sequences that resulted from ASR and were present in the sample. We corroborated these results by metagenomic sequencing and found several genes encoding analogue proteins with significant matches to the peptide epitopes identified with the antibodies. The results demonstrated that peptides inferred from ASR studies have true counterpart analogues in Nature, which validates and strengthens the well-known ASR/protein resurrection technique and our immunoanalytical approach for investigating ancient environments and metabolisms on Earth and elsewhere.


Assuntos
Peptídeos , beta-Lactamases , Biomarcadores , Anticorpos , Mapeamento de Epitopos , Epitopos
4.
Emerg Infect Dis ; 27(11): 2957-2960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34437831

RESUMO

We developed a genomic surveillance program for real-time monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) in Uruguay. We report on a PCR method for SARS-CoV-2 VOCs, the surveillance workflow, and multiple independent introductions and community transmission of the SARS-CoV-2 P.1 VOC in Uruguay.


Assuntos
COVID-19 , SARS-CoV-2 , Genômica , Humanos , Uruguai/epidemiologia
5.
Proc Natl Acad Sci U S A ; 115(42): 10702-10707, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30275328

RESUMO

Cyanobacteria are ecologically versatile microorganisms inhabiting most environments, ranging from marine systems to arid deserts. Although they possess several pathways for light-independent energy generation, until now their ecological range appeared to be restricted to environments with at least occasional exposure to sunlight. Here we present molecular, microscopic, and metagenomic evidence that cyanobacteria predominate in deep subsurface rock samples from the Iberian Pyrite Belt Mars analog (southwestern Spain). Metagenomics showed the potential for a hydrogen-based lithoautotrophic cyanobacterial metabolism. Collectively, our results suggest that they may play an important role as primary producers within the deep-Earth biosphere. Our description of this previously unknown ecological niche for cyanobacteria paves the way for models on their origin and evolution, as well as on their potential presence in current or primitive biospheres in other planetary bodies, and on the extant, primitive, and putative extraterrestrial biospheres.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Ecossistema , Sedimentos Geológicos/análise , Metagenômica , Microscopia de Fluorescência , Análise Serial de Proteínas , Evolução Biológica , Cianobactérias/genética , Cianobactérias/metabolismo
6.
Environ Microbiol ; 21(10): 3577-3600, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31087616

RESUMO

Peñahueca is an athalassohaline hypersaline inland ephemeral lake originated under semiarid conditions in the central Iberian Peninsula (Spain). Its chemical composition makes it extreme for microbial life as well as a terrestrial analogue of other planetary environments. To investigate the persistence of microbial life associated with sulfate-rich crusts, we applied cultivation-independent methods (optical and electron microscopy, 16S rRNA gene profiling and metagenomics) to describe the prokaryotic community and its associated viruses. The diversity for Bacteria was very low and was vastly dominated by endospore formers related to Pontibacillus marinus of the Firmicutes phylum. The archaeal assemblage was more diverse and included taxa related to those normally found in hypersaline environments. Several 'metagenome assembled genomes' were recovered, corresponding to new species of Pontibacillus, several species from the Halobacteria and one new member of the Nanohaloarchaeota. The viral assemblage, although composed of the morphotypes typical of high salt systems, showed little similarity to previously isolated/reconstructed halophages. Several putative prophages of Pontibacillus and haloarchaeal hosts were identified. Remarkably, the Peñahueca sulfate-rich metagenome contained CRISPR-associated proteins and repetitions which were over 10-fold higher than in most hypersaline systems analysed so far.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Vírus/genética , Archaea/classificação , Bactérias/classificação , Biodiversidade , Exobiologia , Filogenia , RNA Ribossômico 16S/genética , Cloreto de Sódio/metabolismo , Espanha , Sulfatos/metabolismo , Vírus/classificação
7.
BMC Genomics ; 17: 375, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206922

RESUMO

BACKGROUND: Leishmania infantum is the protozoan parasite responsible for zoonotic visceral leishmaniasis in the Mediterranean basin. A recent outbreak in humans has been reported in this area. The life cycle of the parasite is digenetic. The promastigote stage develops within the gut of phlebotomine sand flies, whereas amastigotes survive and multiply within phagolysosomes of mammalian host phagocytes. The major vector of L. infantum in Spain is Phlebotomus perniciosus. The axenic culture model of promastigotes is generally used because it is able to mimic the conditions of the natural environment (i.e. the sand fly vector gut). However, infectivity decreases with culture passages and infection of laboratory animals is frequently required. Enrichment of the stationary phase population in highly infective metacyclic promastigotes is achieved by negative selection with peanut agglutinin (PNA), which is possible only in certain Leishmania species such as L. major and L. infantum. In this study, in vitro infectivity and differential gene expression of cultured PNA-negative promastigotes (Pro-PNA(-)) and metacyclic promastigotes isolated from the sand fly anterior thoracic midgut (Pro-Pper) have been compared. RESULTS: In vitro infectivity is about 30 % higher in terms of rate of infected cells and number of amastigotes per infected cell in Pro-Pper than in Pro-PNA(-). This finding is in agreement with up-regulation of a leishmanolysin gene (gp63) and genes involved in biosynthesis of glycosylinositolphospholipids (GIPL), lipophosphoglycan (LPG) and proteophosphoglycan (PPG) in Pro-Pper. In addition, differences between Pro-Pper and Pro-PNA(-) in genes involved in important cellular processes (e.g. signaling and regulation of gene expression) have been found. CONCLUSIONS: Pro-Pper are significantly more infective than peanut lectin non-agglutinating ones. Therefore, negative selection with PNA is an appropriate method for isolating metacyclic promastigotes in stationary phase of axenic culture but it does not allow reaching the in vitro infectivity levels of Pro-Pper. Indeed, GIPL, LPG and PPG biosynthetic genes together with a gp63 gene are up-regulated in Pro-Pper and interestingly, the correlation coefficient between both transcriptomes in terms of transcript abundance is R (2) = 0.68. This means that the correlation is sufficiently high to consider that both samples are physiologically comparable (i.e. the experiment was correctly designed and performed) and sufficiently low to conclude that important differences in transcript abundance have been found. Therefore, the implications of axenic culture should be evaluated case-by-case in each experimental design even when the stationary phase population in culture is enriched in metacyclic promastigotes by negative selection with PNA.


Assuntos
Regulação da Expressão Gênica , Genes de Protozoários , Leishmania infantum/genética , Animais , Evolução Biológica , Transporte Biológico , Linhagem Celular , Metabolismo Energético , Perfilação da Expressão Gênica , Humanos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/isolamento & purificação , Leishmania infantum/metabolismo , Metaloendopeptidases/genética , Modelos Biológicos , Aglutinina de Amendoim/farmacologia , Phlebotomus/parasitologia , Mapeamento de Interação de Proteínas , Proteólise , Transdução de Sinais
8.
Neurocirugia (Astur) ; 25(1): 38-42, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-23453310

RESUMO

Arachnoid cysts are very common lesions in paediatric patients, with treatment depending on their location and symptomatology. They are usually solitary cysts but may be associated with other central nervous system diseases such as tumours and congenital deformities. We describe the case of a neonate diagnosed with an arachnoid cyst of the quadrigeminal cistern treated by endoscopy. After the operation, the child's condition worsened; a CT scan revealed a midline posterior fossa tumour not visible in the preoperative neuroradiological tests. The tumour, a medulloblastoma, was partially removed. Given the child's age and the poor prognosis, oncological treatment was not undertaken. The association between medulloblastoma and arachnoid cyst is very rare, and we could find only one such case in the literature.


Assuntos
Cistos Aracnóideos/congênito , Neoplasias Cerebelares/congênito , Doenças do Prematuro/cirurgia , Meduloblastoma/congênito , Cistos Aracnóideos/diagnóstico por imagem , Cistos Aracnóideos/cirurgia , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/cirurgia , Cesárea , Fontanelas Cranianas , Craniotomia , Descompressão Cirúrgica/métodos , Evolução Fatal , Quarto Ventrículo/patologia , Humanos , Hidrocefalia/congênito , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Meduloblastoma/diagnóstico por imagem , Meduloblastoma/patologia , Meduloblastoma/cirurgia , Invasividade Neoplásica , Teto do Mesencéfalo/diagnóstico por imagem , Ultrassonografia , Ventriculostomia
9.
Astrobiology ; 24(1): 44-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38153386

RESUMO

In the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms (i.e., those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica. As DNA is a strong definitive biosignature, given that there is no known abiotic chemistry that can polymerize nucleobases, we investigated DNA detection with MinION sequencing in Antarctic cryptoendoliths after an ∼58-sol exposure in MARTE, a Mars environmental chamber capable of simulating martian temperature, pressure, humidity, ultraviolet (UV) radiation, and atmospheric composition, in conjunction with protein and lipid detection. The MARTE conditions resulted in changes in community composition and DNA, proteins, and cell membrane-derived lipids remained detectable postexposure. Of the multitude of extreme environmental conditions on Mars, UV radiation (specifically UVC) is the most destructive to both cells and DNA. As such, we further investigated if a UVC exposure corresponding to ∼278 martian years would impede DNA detection via MinION sequencing. The MinION was able to successfully detect and sequence DNA after this UVC radiation exposure, suggesting its utility for life detection in future astrobiology missions focused on finding relatively recently exposed biomarkers inside possible martian refugia.


Assuntos
Marte , Mustelidae , Animais , Meio Ambiente Extraterreno , Regiões Antárticas , Exobiologia , DNA
10.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200071

RESUMO

Most biologically relevant and diagnostic mutations in the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genome have been identified in the S gene through global genomic surveillance efforts. However, large-scale whole-genome sequencing (WGS) is still challenging in developing countries due to higher costs, reagent delays and limited infrastructure. Consequently, only a small fraction of SARS-CoV-2 samples are characterized through WGS in these regions. Here, we present a complete workflow consisting of a fast library preparation protocol based on tiled amplification of the S gene, followed by a PCR barcoding step and sequencing using Nanopore platforms. This protocol facilitates fast and cost-effective identification of main variants of concern and mutational surveillance of the S gene. By applying this protocol, report time and overall costs for SARS-CoV-2 variant detection could be reduced, contributing to improved genomic surveillance programmes, particularly in low-income regions.


Assuntos
COVID-19 , Nanoporos , Humanos , SARS-CoV-2/genética , Análise Custo-Benefício , COVID-19/diagnóstico
11.
Sci Total Environ ; 865: 161249, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36587676

RESUMO

Methane (CH4) gas is the most important GHG after carbon dioxide, with open ocean areas acting as discreet CH4 sources and coastal regions as intense but variable CH4 sources to the atmosphere. Here, we report CH4 concentrations and air-sea fluxes in the coastal area of the Balearic Islands Archipelago (Western Mediterranean Basin). CH4 levels and related biogeochemical variables were measured in three coastal sampling sites between 2018 and 2021, with two located close to the densely populated island of Mallorca and one in a pristine area in the Cabrera Archipelago National Park. CH4 concentrations in seawater during the study period ranged from 2.7 to 10.9 nM, without significant differences between the sampling sites. Averaged estimated CH4 fluxes during the sampling period for the three stations oscillated between 0.2 and 9.7 µmol m-2 d-1 according to a seasonal pattern and in general all sites behaved as weak CH4 sources throughout the sampling period.

12.
Astrobiology ; 23(12): 1303-1336, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38133823

RESUMO

In 2019, the Atacama Rover Astrobiology Drilling Studies (ARADS) project field-tested an autonomous rover-mounted robotic drill prototype for a 6-Sol life detection mission to Mars (Icebreaker). ARADS drilled Mars-like materials in the Atacama Desert (Chile), one of the most life-diminished regions on Earth, where mitigating contamination transfer into life-detection instruments becomes critical. Our Contamination Control Strategy and Implementation (CCSI) for the Sample Handling and Transfer System (SHTS) hardware (drill, scoop and funnels) included out-of-simulation protocol testing (out-of-sim) for hardware decontamination and verification during the 6-Sol simulation (in-sim). The most effective five-step decontamination combined safer-to-use sterilants (3%_hydrogen-peroxide-activated 5%_sodium-hypochlorite), and in situ real-time verification by adenosine triphosphate (ATP) and Signs of Life Detector (SOLID) Fluorescence Immunoassay for characterization hardware bioburden and airborne contaminants. The 20- to 40-min protocol enabled a 4-log bioburden reduction down to <0.1 fmoles ATP detection limit (funnels and drill) to 0.2-0.7 fmoles (scoop) of total ATP. The (post-cleaning) hardware background was 0.3 to 1-2 attomoles ATP/cm2 (cleanliness benchmark background values) equivalent to ca. 1-10 colony forming unit (CFU)/cm2. Further, 60-100% of the in-sim hardware background was ≤3-4 bacterial cells/cm2, the threshold limit for Class <7 aseptic operations. Across the six Sols, the flux of airborne contaminants to the drill sites was ∼5 and ∼22 amoles ATP/(cm2·day), accounting for an unexpectedly high Fluorescence Intensity (FI) signal (FI: ∼6000) against aquatic cyanobacteria, but negligible anthropogenic contribution. The SOLID immunoassay also detected microorganisms from multiple habitats across the Atacama Desert (anoxic, alkaline/acidic microenvironments in halite fields, playas, and alluvial fans) in both airborne and post-cleaning hardware background. Finally, the hardware ATP background was 40-250 times lower than the ATP in cores. Similarly, the FI peaks (FImax) against the microbial taxa and molecular biomarkers detected in the post-cleaned hardware (FI: ∼1500-1600) were 5-10 times lower than biomarkers in drilled sediments, excluding significant interference with putative biomarker found in cores. Similar protocols enable the acquisition of contamination-free materials for ultra-sensitive instruments analysis and the integrity of scientific results. Their application can augment our scientific knowledge of the distribution of cryptic life on Mars-like grounds and support life-detection robotic and human-operated missions to Mars.


Assuntos
Cianobactérias , Marte , Robótica , Humanos , Exobiologia/métodos , Trifosfato de Adenosina , Biomarcadores/análise , Meio Ambiente Extraterreno
13.
Astrobiology ; 23(12): 1284-1302, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856168

RESUMO

We report on a field demonstration of a rover-based drilling mission to search for biomolecular evidence of life in the arid core of the Atacama Desert, Chile. The KREX2 rover carried the Honeybee Robotics 1 m depth The Regolith and Ice Drill for Exploration of New Terrains (TRIDENT) drill and a robotic arm with scoop that delivered subsurface fines to three flight prototype instruments: (1) The Signs of Life Detector (SOLID), a protein and biomolecule analyzer based on fluorescence sandwich microarray immunoassay; (2) the Planetary In Situ Capillary Electrophoresis System (PISCES), an amino acid analyzer based on subcritical water extraction coupled to microchip electrophoresis analysis; and (3) a Wet Chemistry Laboratory cell to measure soluble ions using ion selective electrodes and chronopotentiometry. A California-based science team selected and directed drilling and sampling of three sites separated by hundreds of meters that included a light-toned basin area showing evidence of aqueous activity surrounded by a rocky desert pavement. Biosignatures were detected in basin samples collected at depths ranging from 20 to 80 cm but were not detected in the surrounding area. Subsurface stratigraphy of the units drilled was interpreted from drill sensor data as fine-scale layers of sand/clay sediments interspersed with layers of harder material in the basins and a uniform subsurface composed of course-to-fine sand in the surroundings. The mission timeline and number of commands sent to accomplish each activity were tracked. The deepest sample collected (80 cm) required 55 commands, including drilling and delivery to three instruments. Elapsed time required for drilling and sample handling was less than 3 hours to collect sample from 72 cm depth, including time devoted to recovery from a jammed drill. The experiment demonstrated drilling, sample transfer technologies, and instruments that accomplished successful detection of biomolecular evidence of life in one of the most biologically sparse environments on Earth.


Assuntos
Exobiologia , Marte , Robótica , Chile , Planetas , Areia , Água
14.
Astrobiology ; 23(12): 1259-1283, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37930382

RESUMO

The low organic matter content in the hyperarid core of the Atacama Desert, together with abrupt temperature shifts and high ultraviolet radiation at its surface, makes this region one of the best terrestrial analogs of Mars and one of the best scenarios for testing instrumentation devoted to in situ planetary exploration. We have operated remotely and autonomously the SOLID-LDChip (Signs of Life Detector-Life Detector Chip), an antibody microarray-based sensor instrument, as part of a rover payload during the 2019 NASA Atacama Rover Astrobiology Drilling Studies (ARADS) Mars drilling simulation campaign. A robotic arm collected drilled cuttings down to 80 cm depth and loaded SOLID to process and assay them with LDChip for searching for molecular biomarkers. A remote science team received and analyzed telemetry data and LDChip results. The data revealed the presence of microbial markers from Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, Firmicutes, and Cyanobacteria to be relatively more abundant in the middle layer (40-50 cm). In addition, the detection of several proteins from nitrogen metabolism indicates a pivotal role in the system. These findings were corroborated and complemented on "returned samples" to the lab by a comprehensive analysis that included DNA sequencing, metaproteomics, and a metabolic reconstruction of the sampled area. Altogether, the results describe a relatively complex microbial community with members capable of nitrogen fixation and denitrification, sulfur oxidation and reduction, or triggering oxidative stress responses, among other traits. This remote operation demonstrated the high maturity of SOLID-LDChip as a powerful tool for remote in situ life detection for future missions in the Solar System.


Assuntos
Cianobactérias , Marte , Raios Ultravioleta , Exobiologia/métodos , Anticorpos , Biomarcadores/análise , Clima Desértico
15.
Nat Commun ; 14(1): 808, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810853

RESUMO

Identifying unequivocal signs of life on Mars is one of the most important objectives for sending missions to the red planet. Here we report Red Stone, a 163-100 My alluvial fan-fan delta that formed under arid conditions in the Atacama Desert, rich in hematite and mudstones containing clays such as vermiculite and smectites, and therefore geologically analogous to Mars. We show that Red Stone samples display an important number of microorganisms with an unusual high rate of phylogenetic indeterminacy, what we refer to as "dark microbiome", and a mix of biosignatures from extant and ancient microorganisms that can be barely detected with state-of-the-art laboratory equipment. Our analyses by testbed instruments that are on or will be sent to Mars unveil that although the mineralogy of Red Stone matches that detected by ground-based instruments on the red planet, similarly low levels of organics will be hard, if not impossible to detect in Martian rocks depending on the instrument and technique used. Our results stress the importance in returning samples to Earth for conclusively addressing whether life ever existed on Mars.


Assuntos
Meio Ambiente Extraterreno , Marte , Exobiologia/métodos , Fósseis , Limite de Detecção , Filogenia
16.
Environ Microbiol ; 14(9): 2495-510, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22564293

RESUMO

In this study we examined the microbial community composition and operating metabolisms on the surface and in the permafrost of Deception Island, (Antarctica) with an on site antibody microarray biosensor. Samples (down to a depth of 4.2 m) were analysed with LDChip300 (Life Detector Chip), an immunosensor containing more than 300 antibodies targeted to bacterial and archaeal antigens. The immunograms showed positive antigen-antibody reactions in all surface samples (lichens, pyroclasts) and the top layer of the permafrost. The results indicated the presence of exopolysaccharides, bacteria belonging to the Alpha-, Delta- and Gammaproteobacteria, Bacteroidetes, Gram-positive Actinobacteria and Firmicutes, as well as archaeal species, most probably Methanobacterium spp. Positive reactions with antibodies to proteins and peptides revealed the presence of nitrogen fixation (NifHD, GlnB, HscA), methanogenic (McrB), iron homeostasis and iron scavenging (ferritins and DPS proteins) proteins, as well as ABC transporters, which indicated that these processes were operating at the time of sampling. These results were validated with other molecular ecology techniques such as oligonucleotide microarrays, 16S bacterial rRNA gene sequence analysis, aerobic viable counts and microscopy. Molecular ecology results showed a differentiated pattern along the depth of the drill, being the top active layer the most diverse, with Acidobacteria, Actinobacteria, Proteobacteria, Bacteroidetes and the phototrophs Cyanobacteria and Chloroflexi as dominant groups. Actinobacteria and Firmicutes were dominant in depths from 0.5 to 2 m, and Betaproteobacteria from 3 to 4.2 m. The geochemical analysis revealed the presence of low molecular weight organic acids (acetate, formate) which could be used by microorganisms as energy sources for sulfate, nitrate and metal reduction under anaerobic conditions.


Assuntos
Archaea , Bactérias , Biodiversidade , Ilhas , Microbiologia do Solo , Regiões Antárticas , Antígenos Arqueais/metabolismo , Antígenos de Bactérias/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carga Bacteriana , Biomarcadores/análise , Microscopia Eletrônica de Varredura , Filogenia , RNA Ribossômico 16S/genética , Solo/química
17.
Virus Res ; 314: 198753, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35331836

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel virus that belongs to the family Coronaviridae. This virus produces a respiratory illness known as coronavirus disease 2019 (COVID-19) and is to blame for the pandemic of COVID-19. Due to its massive circulation around the world and the capacity of mutation of this virus, genomic studies are much needed in to order to reveal new variants of concern (VOCs). On November 26th, 2021, the WHO announced that a new SARS-CoV-2 VOC, named Omicron, had emerged. In order to get insight into the emergence, spread and evolution of Omicron SARS-CoV-2 variants, a comprehensive phylogenetic study was performed. The results of these studies revealed significant differences in codon usage among the S genes of SARS-CoV-2 VOCs Alfa, Beta, Gamma, Delta and Omicron, which can be linked to SARS-CoV-2 genotypes. Omicron variant did not evolve out of one of the early VOCs, but instead it belongs to a complete different genetic lineage from previous ones. Strains classified as Omicron variants evolved from ancestors that existed around May 15th, 2020, suggesting that this VOC may have been circulating undetected for a period of time until its emergence was observed in South Africa. A rate of evolution of 5.61 × 10-4 substitutions/site/year was found for Omicron strains enrolled in these analyses. The results of these studies demonstrate that S genes have suitable genetic information for clear assignment of emerging VOCs to its specific genotypes.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
18.
Virus Res ; 311: 198688, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35074431

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) is caused by a novel member of the family Coronaviridae, now known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies revealed the emergence of virus variants with substitutions in the spike and/or nucleocapsid and RNA-dependent RNA polymerase proteins that are partly responsible for enhanced transmission and reduced or escaped anti-SARS-CoV-2 antibodies that may reduce the efficacy of antibodies and vaccines against the first identified SARS-CoV-2 strains. In order to gain insight into the emergence and evolution of SARS-CoV-2 variants circulating in the South American region, a comprehensive phylogenetic study of SARS-CoV-2 variants circulating in this region was performed. The results of these studies revealed sharp increase in virus effective population size from March to April of 2020. At least 62 different genotypes were found to circulate in this region. Variants of concern (VOCs) Alpha, Beta, Gamma and Delta co-circulate in the region, together with variants of interest (VOIs) Lambda, Mu and Zeta. Most of SARS-CoV-2 variants circulating in the South American region belongs to B.1 genotypes and have substitutions in the spike and/or nucleocapsid and polymerase proteins that confer high transmissibility and/or immune resistance. 148 amino acid positions of the spike protein and 70 positions of the nucleocapsid were found to have substitutions in different variants isolated in the region by comparison with reference strain Wuhan-Hu-1. Significant differences in codon usage among spike genes of SARS-CoV-2 strains circulating in South America was found, which can be linked to SARS-CoV-2 genotypes.


Assuntos
COVID-19 , Filogenia , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/classificação , SARS-CoV-2/genética , América do Sul , Glicoproteína da Espícula de Coronavírus/genética
19.
BMJ ; 379: e073070, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36450402

RESUMO

OBJECTIVE: To estimate the effectiveness of a two dose vaccine schedule (mRNA-1273, BNT162b2, and BBIBP-CorV) against SARS-CoV-2 infection and covid-19 related death and short term waning of immunity in children (3-11 years old) and adolescents (12-17 years old) during periods of delta and omicron variant predominance in Argentina. DESIGN: Test negative, case-control study. SETTING: Database of the National Surveillance System and the Nominalized Federal Vaccination Registry of Argentina. PARTICIPANTS: 844 460 children and adolescents without previous SARS-CoV-2 infection eligible to receive primary vaccination schedule who were tested for SARS-CoV-2 by polymerase chain reaction or rapid antigen test from September 2021 to April 2022. After matching with their corresponding controls, 139 321 (60.3%) of 231 181 cases remained for analysis. EXPOSURES: Two dose mRNA-1273, BNT162b2, and BBIBP-CorV vaccination schedule. MAIN OUTCOME MEASURES: SARS-CoV-2 infection and covid-19 related death. Conditional logistic regression was used to estimate the odds of SARS-CoV-2 infection among two dose vaccinated and unvaccinated participants. Vaccine effectiveness was estimated as (1-odds ratio)×100%. RESULTS: Estimated vaccine effectiveness against SARS-CoV-2 infection was 61.2% (95% confidence interval 56.4% to 65.5%) in children and 66.8% (63.9% to 69.5%) in adolescents during the delta dominant period and 15.9% (13.2% to 18.6%) and 26.0% (23.2% to 28.8%), respectively, when omicron was dominant. Vaccine effectiveness declined over time, especially during the omicron period, from 37.6% (34.2% to 40.8%) at 15-30 days after vaccination to 2.0% (1.8% to 5.6%) after ≥60 days in children and from 55.8% (52.4% to 59.0%) to 12.4% (8.6% to 16.1%) in adolescents.Vaccine effectiveness against death related to SARS-CoV-2 infection during omicron predominance was 66.9% (6.4% to 89.8%) in children and 97.6% (81.0% to 99.7%) in adolescents. CONCLUSIONS: Vaccine effectiveness in preventing mortality remained high in children and adolescents regardless of the circulating variant. Vaccine effectiveness in preventing SARS-CoV-2 infection in the short term after vaccination was lower during omicron predominance and decreasing sharply over time. TRIAL REGISTRATION: National Registry of Health Research IS003720.


Assuntos
COVID-19 , Vacinas , Adolescente , Criança , Humanos , Pré-Escolar , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacina BNT162 , Vacina de mRNA-1273 contra 2019-nCoV , Estudos de Casos e Controles , Argentina/epidemiologia
20.
Astrobiology ; 22(10): 1199-1209, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36194868

RESUMO

The effect of a Mars-like UV flux and γ-radiation on the detectability of biomarkers in dried cells of Chroococcidiopsis sp. CCMEE 029 was investigated using a fluorescence sandwich microarray immunoassay. The production of anti-Chroococcidiopsis antibodies allowed the immunoidentification of a reduced, though still detectable, signal in dried cells mixed with phyllosilicatic and sulfatic Mars regolith simulants after exposure to 6.8 × 105 kJ/m2 of a Mars-like UV flux. No signal was detected in dried cells that were not mixed with minerals after 1.4 × 105 kJ/m2. For γ-radiation (60Co), no detectable variations of the fluorescence signal occurred in dried cells exposed to 113 kGy compared to non-irradiated dried cells. Our results suggest that immunoassay-based techniques could be used to detect life tracers eventually present in the martian subsurface in freshly excavated materials only if shielded from solar UV. The high structural integrity of biomarkers irradiated with γ-radiation that mimics a dose accumulated in 13 Myr at 2 m depth from the martian surface has implications for the potential detectability of similar organic molecules/compounds by future life-detection missions such as the ExoMars Rosalind Franklin rover.


Assuntos
Cianobactérias , Marte , Biomarcadores , Cianobactérias/efeitos da radiação , Meio Ambiente Extraterreno , Minerais , Radiação Ionizante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA