Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055077

RESUMO

Whilst avoidance of chemical modifications of DNA bases is essential to maintain genome stability, during evolution eukaryotic cells have evolved a chemically reversible modification of the cytosine base. These dynamic methylation and demethylation reactions on carbon-5 of cytosine regulate several cellular and developmental processes such as embryonic stem cell pluripotency, cell identity, differentiation or tumourgenesis. Whereas these physiological processes are well characterized, very little is known about the toxicity of these cytosine analogues when they incorporate during replication. Here, we report a role of the base excision repair factor XRCC1 in protecting replication fork upon incorporation of 5-hydroxymethyl-2'-deoxycytosine (5hmC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmU) during DNA synthesis. In the absence of XRCC1, 5hmC exposure leads to increased genomic instability, replication fork impairment and cell lethality. Moreover, the 5hmC deamination product 5hmU recapitulated the genomic instability phenotypes observed by 5hmC exposure, suggesting that 5hmU accounts for the observed by 5hmC exposure. Remarkably, 5hmC-dependent genomic instability and replication fork impairment seen in Xrcc1-/- cells were exacerbated by the trapping of Parp1 on chromatin, indicating that XRCC1 maintains replication fork stability during processing of 5hmC and 5hmU by the base excision repair pathway. Our findings uncover natural epigenetic DNA bases 5hmC and 5hmU as genotoxic nucleosides that threaten replication dynamics and genome integrity in the absence of XRCC1.


Assuntos
Desmetilação do DNA , Replicação do DNA , Desoxicitidina/análogos & derivados , Timidina/análogos & derivados , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética , 5-Metilcitosina/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Epigênese Genética , Instabilidade Genômica , Humanos , Origem de Replicação , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/metabolismo
2.
Cell Death Dis ; 13(5): 503, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624090

RESUMO

Fanconi anemia (FA) is a rare hereditary disorder caused by mutations in any one of the FANC genes. FA cells are mainly characterized by extreme hypersensitivity to interstrand crosslink (ICL) agents. Additionally, the FA proteins play a crucial role in concert with homologous recombination (HR) factors to protect stalled replication forks. Here, we report that the 5-methyl-2'-deoxycytidine (5mdC) demethylation (pathway) intermediate 5-hydroxymethyl-2'-deoxycytidine (5hmdC) and its deamination product 5-hydroxymethyl-2'-deoxyuridine (5hmdU) elicit a DNA damage response, chromosome aberrations, replication fork impairment and cell viability loss in the absence of FANCD2. Interestingly, replication fork instability by 5hmdC or 5hmdU was associated to the presence of Poly(ADP-ribose) polymerase 1 (PARP1) on chromatin, being both phenotypes exacerbated by olaparib treatment. Remarkably, Parp1-/- cells did not show any replication fork defects or sensitivity to 5hmdC or 5hmdU, suggesting that retained PARP1 at base excision repair (BER) intermediates accounts for the observed replication fork defects upon 5hmdC or 5hmdU incorporation in the absence of FANCD2. We therefore conclude that 5hmdC is deaminated in vivo to 5hmdU, whose fixation by PARP1 during BER, hinders replication fork progression and contributes to genomic instability in FA cells.


Assuntos
Anemia de Fanconi , Desmetilação do DNA , Replicação do DNA , Desoxicitidina/análogos & derivados , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Humanos , Timidina/análogos & derivados
3.
Pharmaceutics ; 12(5)2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32466339

RESUMO

Gene therapy is a therapeutic process consisting of the transport of genetic material into cells. The design and preparation of novel carriers to transport DNA is an important research line in the medical field. Hybrid compounds such as metallo-liposomes, containing a mixture of lipids, were prepared and characterized. Cationic metal lipids derived from the [Ru(bpy)3]2+ complex, RuC11C11 or RuC19C19, both with different hydrophobic/lipophilic ratios, were mixed with the phospholipid DOPE. A relation between the size and the molar fraction α was found and a multidisciplinary study about the interaction between the metallo-liposomes and DNA was performed. The metallo-liposomes/DNA association was quantified and a relationship between Kapp and α was obtained. Techniques such as AFM, SEM, zeta potential, dynamic light scattering and agarose gel electrophoresis demonstrated the formation of lipoplexes and showed the structure of the liposomes. L/D values corresponding to the polynucleotide's condensation were estimated. In vitro assays proved the low cell toxicity of the metallo-liposomes, lower for normal cells than for cancer cell lines, and a good internalization into cells. The latter as well as the transfection measurements carried out with plasmid DNA pEGFP-C1 have demonstrated a good availability of the Ru(II)-based liposomes for being used as non-toxic nanovectors in gene therapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA