Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Opt Express ; 32(6): 8715-8722, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571122

RESUMO

Silicon planar waveguides are designed to maximize the wavelength conversion efficiency via the use of Raman-enhanced four-wave mixing in the telecom band. By investigating the dispersion properties of various rib waveguide structures, the optimum etch depth and width are selected to obtain efficient phase-matching for a continuous-wave pump at 1545 nm. The design benefits from good fabrication tolerance in the structural parameters, which are well within the precision of standard lithography and etching processes. Using the optimized waveguides, simulations show that it is possible to reach conversion efficiencies as high as ∼45 dB for waveguide lengths as short as 4.6 cm, with a pump power of only 130 mW. This enhancement in the conversion efficiency is about 50 dB higher than conventional values for FWM in integrated silicon photonic systems, highlighting the benefits of exploiting the coupling between the two nonlinear processes.

2.
Opt Express ; 31(2): 1532-1540, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36785186

RESUMO

Low-temperature deposited polycrystalline silicon waveguides are emerging as a flexible platform that allows for dense optoelectronic integration. Here, the optical transmission properties of poly-silicon waveguides have been characterized from the near-to-mid-infrared wavelength regime, extending the optical transmission well beyond previous reports in the telecom band. The poly-Si waveguides with a dimension of 3 µm × âˆ¼0.6 µm have been produced from pre-patterned amorphous silicon waveguides that are post-processed through laser melting, reflowing, and crystallization using a highly localized laser induced heat treatment at a wavelength of 532 nm. Low optical transmission losses (<3 dB cm-1) have been observed at 1.55 µm as well as across the wavelength range of 2-2.25 µm, aided by the relatively large waveguide heights that are enabled by the deposition process. The results demonstrate the suitability of low-temperature poly-silicon waveguides to find wide ranging applications within integrated mid-infrared systems.

3.
Opt Lett ; 47(7): 1626-1629, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35363694

RESUMO

A strong Raman enhancement to the four-wave mixing (FWM) conversion efficiency is obtained in a silicon core fiber (SCF) when pumped with a continuous-wave (CW) source in the telecom band. By tapering the SCFs to alter the core diameter and length, the role of phase-matching on the conversion enhancement is investigated, with a maximum Raman enhancement of ∼15 dB obtained for an SCF with a zero dispersion wavelength close to the pump. Simulations show that by optimizing the tapered waist diameter to overlap the FWM phase-matching with the peak Raman gain, it is possible to obtain large Raman enhanced FWM conversion efficiencies of up to ∼2 dB using modest CW pump powers over wavelengths covering the extended telecom bands.

4.
Opt Express ; 28(20): 29192-29201, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33114823

RESUMO

We report nonlinear optical characterization of cm-long polycrystalline silicon (poly-Si) waveguides at telecom wavelengths. Laser post-processing of lithographically-patterned amorphous silicon deposited on silica-on-silicon substrates provides low-loss poly-Si waveguides with surface-tension-shaped boundaries. Achieving optical losses as low as 4 dB cm-1 enabled us to demonstrate effects of self-phase modulation (SPM) and two-photon absorption (TPA). Analysis of the spectral broadening and nonlinear losses with numerical modeling reveals the best fit values of the Kerr coefficient n2=4.5×10-18 m W-1 and TPA coefficient ßTPA=9.0×10-12 m2 W-1, which are within the range reported for crystalline silicon. On-chip low-loss poly-Si paves the way for flexible integration of nonlinear components in multi-layered photonic systems.

5.
Opt Express ; 28(12): 17630-17642, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679968

RESUMO

A novel technique for realization of configurable/one-time programmable (OTP) silicon photonic circuits is presented. Once the proposed photonic circuit is programmed, its signal routing is retained without the need for additional power consumption. This technology can potentially enable a multi-purpose design of photonic chips for a range of different applications and performance requirements, as it can be programmed for each specific application after chip fabrication. Therefore, the production costs per chip can be reduced because of the increase in production volume, and rapid prototyping of new photonic circuits is enabled. Essential building blocks for the configurable circuits in the form of erasable directional couplers (DCs) were designed and fabricated, using ion implanted waveguides. We demonstrate permanent switching of optical signals between the drop port and through the port of the DCs using a localized post-fabrication laser annealing process. Proof-of-principle demonstrators in the form of generic 1×4 and 2×2 programmable switching circuits were fabricated and subsequently programmed.

6.
Opt Express ; 27(4): 4462-4470, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876064

RESUMO

We report the fabrication of low-loss, low temperature deposited polysilicon waveguides via laser crystallization. The process involves pre-patterning amorphous silicon films to confine the thermal energy during the crystallization phase, which helps to control the grain growth and reduce the heat transfer to the surrounding media, making it compatible with CMOS integration. Micro-Raman spectroscopy, Secco etching and X-ray diffraction measurements reveal the high crystalline quality of the processed waveguides with the formation of millimeter long crystal grains. Optical losses as low as 5.3 dB/cm have been measured, indicating their suitability for the development of high-density integrated circuits.

7.
Opt Lett ; 43(13): 3100-3103, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957791

RESUMO

Few-layer molybdenum disulfide (MoS2) has an electronic band structure that is dependent on the number of layers and, therefore, is a very promising material for an array of optoelectronic, photonic, and lasing applications. In this Letter, we make use of a side-polished optical fiber platform to gain access to the nonlinear optical properties of the MoS2 material. We show that the nonlinear response can be significantly enhanced via resonant coupling to the thin film material, allowing for the observation of optical modulation and spectral broadening in the telecom band. This route to access the nonlinear properties of two-dimensional materials promises to yield new insights into their photonic properties.

8.
Opt Express ; 25(20): 24157-24163, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-29041361

RESUMO

Reported here is the fabrication of tapered silicon core fibers possessing a nano-spike input that facilitates their seamless splicing to conventional single mode fibers. A proof-of-concept 30 µm cladding diameter fiber-based device is demonstrated with nano-spike coupling and propagation losses below 4 dB and 2 dB/cm, respectively. Finite-element-method-based simulations show that the nano-spike coupling losses could be reduced to below 1 dB by decreasing the cladding diameters down to 10 µm. Such efficient and robust integration of the silicon core fibers with standard fiber devices will help to overcome significant barriers for all-fiber nonlinear photonics and optoelectronics.

9.
Opt Lett ; 42(18): 3553, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28914899

RESUMO

We correct an error of the nonlinear refractive index used in our original paper.

10.
Opt Lett ; 41(20): 4763-4766, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28005887

RESUMO

A programmable fiber long-period grating (LPG) is experimentally demonstrated in a liquid core optical fiber with a low insertion loss. The LPG is dynamically formed by a temperature gradient in real time through a micro-heater array. The transmission spectrum of the LPG can be completely reconfigured by digitally changing the grating period, index contrast, length, and design. The phase shift inside the LPG can also be readily defined to enable advanced spectrum shaping. Owing to the high thermo-optic coefficient of the liquid core, it is possible to achieve high coupling efficiencies with driving powers as low as a few tens of milliwatts. The proposed thermo-programmable device provides a potential design solution for dynamic all-fiber optics components.

11.
Opt Lett ; 41(7): 1360-3, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27192236

RESUMO

We propose and demonstrate a novel approach to obtaining small-core polysilicon waveguides from the silicon fiber platform. The fibers were fabricated via a conventional drawing tower method and, subsequently, tapered down to achieve silicon core diameters of ∼1 µm, the smallest optical cores for this class of fiber to date. Characterization of the material properties have shown that the taper process helps to improve the local crystallinity of the silicon core, resulting in a significant reduction in the material loss. By exploiting the combination of small cores and low losses, these tapered fibers have enabled the first observation of nonlinear transmission within a polycrystalline silicon waveguide of any type. As the fiber drawing method is highly scalable, it opens a route for the development of low-cost and flexible nonlinear silicon photonic systems.

12.
Nat Mater ; 13(12): 1122-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25262096

RESUMO

For decades now, silicon has been the workhorse of the microelectronics revolution and a key enabler of the information age. Owing to its excellent optical properties in the near- and mid-infrared, silicon is now promising to have a similar impact on photonics. The ability to incorporate both optical and electronic functionality in a single material offers the tantalizing prospect of amplifying, modulating and detecting light within a monolithic platform. However, a direct consequence of silicon's transparency is that it cannot be used to detect light at telecommunications wavelengths. Here, we report on a laser processing technique developed for our silicon fibre technology through which we can modify the electronic band structure of the semiconductor material as it is crystallized. The unique fibre geometry in which the silicon core is confined within a silica cladding allows large anisotropic stresses to be set into the crystalline material so that the size of the bandgap can be engineered. We demonstrate extreme bandgap reductions from 1.11 eV down to 0.59 eV, enabling optical detection out to 2,100 nm.

13.
Opt Lett ; 40(10): 2213-6, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26393702

RESUMO

The nonlinear absorption properties of a germanium-on-silicon waveguide have been characterized across the two-photon absorption (TPA) transmission window. The results show that the TPA parameters in germanium waveguides are much stronger than the peak values in silicon, in good agreement with selected measurements conducted in bulk materials. Exploiting the large nonlinear absorption near the bandedge, efficient all-optical modulation is achieved with a modulation depth of ∼8 dB and a response time <5 ps.

14.
Opt Lett ; 40(2): 268-71, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25679861

RESUMO

All-optical modulation has been demonstrated in a germanium-on-silicon rib waveguide over the mid-infrared wavelength range of 2-3 µm using a free-carrier absorption scheme. Transmission measurements have shown the waveguides to have low propagation losses that are relatively independent of wavelength out to 3.8 µm, indicating that the modulation could be extended further into the mid-infrared region for applications in sensing and spectroscopy. By monitoring the material recovery, the free-carrier lifetime of the micron-sized waveguides has been estimated to be ∼18 ns, allowing for modulation speeds within the megahertz regime.

15.
Opt Express ; 21(23): 28751-7, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514387

RESUMO

A method to fabricate all-in-fiber liquid microcells has been demonstrated which allows for the incorporation of complex hollow-core photonic crystal fibers (HCPCFs). The approach is based on a mechanical splicing method in which the hollow-core fibers are pigtailed with telecoms fibers to yield devices that have low insertion losses, are highly compact, and do not suffer from evaporation of the core material. To isolate the PCF cores for the infiltration of low index liquids, a pulsed CO2 laser cleaving technique has been developed which seals only the very ends of the cladding holes, thus minimizing degradation of the guiding properties at the coupling region. The efficiency of this integration method has been verified via strong cascaded Raman scattering in both toluene (high index) core capillaries and ethanol (low index) core HCPCFs, for power thresholds up to six orders of magnitude lower than previous results. We anticipate that this stable, robust all-fiber integration approach will open up new possibilities for the exploration of optofluidic interactions.

16.
Light Sci Appl ; 12(1): 209, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648683

RESUMO

Raman scattering provides a convenient mechanism to generate or amplify light at wavelengths where gain is not otherwise available. When combined with recent advancements in high-power fiber lasers that operate at wavelengths ~2 µm, great opportunities exist for Raman systems that extend operation further into the mid-infrared regime for applications such as gas sensing, spectroscopy, and biomedical analyses. Here, a thulium-doped fiber laser is used to demonstrate Raman emission and amplification from a highly nonlinear silicon core fiber (SCF) platform at wavelengths beyond 2 µm. The SCF has been tapered to obtain a micrometer-sized core diameter (~1.6 µm) over a length of 6 cm, with losses as low as 0.2 dB cm-1. A maximum on-off peak gain of 30.4 dB was obtained using 10 W of peak pump power at 1.99 µm, with simulations indicating that the gain could be increased to up to ~50 dB by extending the SCF length. Simulations also show that by exploiting the large Raman gain and extended mid-infrared transparency of the SCF, cascaded Raman processes could yield tunable systems with practical output powers across the 2-5 µm range.

17.
J Am Chem Soc ; 134(1): 19-22, 2012 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-22148467

RESUMO

Hydrogenated amorphous silicon (a-Si:H) is one of the most technologically important semiconductors. The challenge in producing it from SiH(4) precursor is to overcome a significant kinetic barrier to decomposition at a low enough temperature to allow for hydrogen incorporation into a deposited film. The use of high precursor concentrations is one possible means to increase reaction rates at low enough temperatures, but in conventional reactors such an approach produces large numbers of homogeneously nucleated particles in the gas phase, rather than the desired heterogeneous deposition on a surface. We report that deposition in confined micro-/nanoreactors overcomes this difficulty, allowing for the use of silane concentrations many orders of magnitude higher than conventionally employed while still realizing well-developed films. a-Si:H micro-/nanowires can be deposited in this way in extreme aspect ratio, small-diameter optical fiber capillary templates. The semiconductor materials deposited have ~0.5 atom% hydrogen with passivated dangling bonds and good electronic properties. They should be suitable for a wide range of photonic and electronic applications such as nonlinear optical fibers and solar cells.

18.
Opt Lett ; 37(5): 818-20, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378404

RESUMO

Numerical simulations are used to investigate soliton compression in silicon core optical fibers at 2.3 µm in the mid-infrared waveguide regime. Compression in both standard silicon fibers and fiber tapers is compared to establish the relative compression ratios for a range of input pulse conditions. The results show that tapered fibers can be used to obtain higher levels of compression for moderate soliton orders and thus lower input powers.

19.
Opt Lett ; 37(16): 3351-3, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23381254

RESUMO

Multimode propagation in silicon core optical fibers is investigated via numerical modeling of the coupled mode equations. The simulations consider spectral evolution in two fibers with different micrometer-sized cores that have experimentally been shown to exhibit nonlinear broadening. The results indicate that most of the coupled power is propagated in the fundamental mode of each fiber, with a small contribution from the higher-order modes affecting the spectral shape but not the width of the broadening.

20.
Micromachines (Basel) ; 13(2)2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35208415

RESUMO

Germanium (Ge) ion implantation into silicon waveguides will induce lattice defects in the silicon, which can eventually change the crystal silicon into amorphous silicon and increase the refractive index from 3.48 to 3.96. A subsequent annealing process, either by using an external laser or integrated thermal heaters can partially or completely remove those lattice defects and gradually change the amorphous silicon back into the crystalline form and, therefore, reduce the material's refractive index. Utilising this change in optical properties, we successfully demonstrated various erasable photonic devices. Those devices can be used to implement a flexible and commercially viable wafer-scale testing method for a silicon photonics fabrication line, which is a key technology to reduce the cost and increase the yield in production. In addition, Ge ion implantation and annealing are also demonstrated to enable post-fabrication trimming of ring resonators and Mach-Zehnder interferometers and to implement nonvolatile programmable photonic circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA