Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Anaesth ; 132(2): 300-311, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37914581

RESUMO

BACKGROUND: Understanding the neural correlates of consciousness has important ramifications for the theoretical understanding of consciousness and for clinical anaesthesia. A major limitation of prior studies is the use of responsiveness as an index of consciousness. We identified a collection of measures derived from unresponsive subjects and more specifically their association with consciousness (any subjective experience) or connectedness (specific experience of environmental stimuli). METHODS: Using published data generated through the UNderstanding Consciousness Connectedness and Intra-Operative Unresponsiveness Study (NCT03284307), we evaluated 10 previously published resting-state EEG-based measures that were derived using unresponsiveness as a proxy for unconsciousness. Measures were tested across dexmedetomidine and propofol sedation and natural sleep. These markers represent the complexity, connectivity, cross-frequency coupling, graph theory, and power spectrum measures. RESULTS: Although many of the proposed markers were associated with consciousness per se (reported subjective experience), none were specific to consciousness alone; rather, each was also associated with connectedness (i.e. awareness of the environment). In addition, multiple markers showed no association with consciousness and were associated only with connectedness. Of the markers tested, loss of normalised-symbolic transfer entropy (front to back) was associated with connectedness across all three experimental conditions, whereas the transition from disconnected consciousness to unconsciousness was associated with significant decreases in permutation entropy and spectral exponent (P<0.05 for all conditions). CONCLUSIONS: None of the proposed EEG-based neural correlates of unresponsiveness corresponded solely to consciousness, highlighting the need for a more conservative use of the term (un)consciousness when assessing unresponsive participants. CLINICAL TRIAL REGISTRATION: NCT03284307.


Assuntos
Estado de Consciência , Propofol , Humanos , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Inconsciência , Sono , Eletroencefalografia
2.
Alzheimers Dement ; 20(1): 511-524, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37695013

RESUMO

INTRODUCTION: Post-operative delirium (POD) is associated with increased morbidity and mortality but is bereft of treatments, largely due to our limited understanding of the underlying pathophysiology. We hypothesized that delirium reflects a disturbance in cortical connectivity that leads to altered predictions of the sensory environment. METHODS: High-density electroencephalogram recordings during an oddball auditory roving paradigm were collected from 131 patients. Dynamic causal modeling (DCM) analysis facilitated inference about the neuronal connectivity and inhibition-excitation dynamics underlying auditory-evoked responses. RESULTS: Mismatch negativity amplitudes were smaller in patients with POD. DCM showed that delirium was associated with decreased left-sided superior temporal gyrus (l-STG) to auditory cortex feedback connectivity. Feedback connectivity also negatively correlated with delirium severity and systemic inflammation. Increased inhibition of l-STG, with consequent decreases in feed-forward and feed-back connectivity, occurred for oddball tones during delirium. DISCUSSION: Delirium is associated with decreased feedback cortical connectivity, possibly resulting from increased intrinsic inhibitory tone. HIGHLIGHTS: Mismatch negativity amplitude was reduced in patients with delirium. Patients with postoperative delirium had increased feedforward connectivity before surgery. Feedback connectivity was diminished from left-side superior temporal gyrus to left primary auditory sensory area during delirium. Feedback connectivity inversely correlated with inflammation and delirium severity.


Assuntos
Delírio , Potenciais Evocados Auditivos , Humanos , Retroalimentação , Potenciais Evocados Auditivos/fisiologia , Eletroencefalografia , Inflamação , Estimulação Acústica/métodos
3.
Brain ; 145(2): 500-516, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203088

RESUMO

N ε-lysine acetylation within the lumen of the endoplasmic reticulum is a recently characterized protein quality control system that positively selects properly folded glycoproteins in the early secretory pathway. Overexpression of the endoplasmic reticulum acetyl-CoA transporter AT-1 in mouse forebrain neurons results in increased dendritic branching, spine formation and an autistic-like phenotype that is attributed to altered glycoprotein flux through the secretory pathway. AT-1 overexpressing neurons maintain the cytosolic pool of acetyl-CoA by upregulation of SLC25A1, the mitochondrial citrate/malate antiporter and ATP citrate lyase, which converts cytosolic citrate into acetyl-CoA. All three genes have been associated with autism spectrum disorder, suggesting that aberrant cytosolic-to-endoplasmic reticulum flux of acetyl-CoA can be a mechanistic driver for the development of autism spectrum disorder. We therefore generated a SLC25A1 neuron transgenic mouse with overexpression specifically in the forebrain neurons. The mice displayed autistic-like behaviours with a jumping stereotypy. They exhibited increased steady-state levels of citrate and acetyl-CoA, disrupted white matter integrity with activated microglia and altered synaptic plasticity and morphology. Finally, quantitative proteomic and acetyl-proteomic analyses revealed differential adaptations in the hippocampus and cortex. Overall, our study reinforces the connection between aberrant cytosolic-to-endoplasmic reticulum acetyl-CoA flux and the development of an autistic-like phenotype.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transportadores de Ânions Orgânicos , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Animais , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Ácido Cítrico , Humanos , Camundongos , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Transportadores de Ânions Orgânicos/genética , Fenótipo , Proteômica
4.
Br J Anaesth ; 130(5): 546-556, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36842841

RESUMO

BACKGROUND: The effect of postoperative delirium on the amyloid cascade of Alzheimer's dementia is poorly understood. Using early postoperative plasma biomarkers, we explored whether surgery and delirium are associated with changes in amyloid pathways. METHODS: We analysed data from 100 participants in the Interventions for Postoperative Delirium: Biomarker-3 (IPOD-B3) cohort study in the USA (NCT03124303 and NCT01980511), which recruited participants aged >65 yr undergoing non-intracranial surgery. We assessed the relationship between the change in plasma amyloid beta ratio (AßR; Aß42:Aß40) and delirium incidence (defined by the 3-Minute Diagnostic Confusion Assessment Method) and severity (quantified by the Delirium Rating Scale-Revised-98, the study's primary outcome). We also tested the relationship between plasma amyloid beta and intraoperative variables. RESULTS: Across all participants, the plasma AßR increased from the preoperative period to postoperative Day 1 (Wilcoxon P<0.001). However, this increase was not associated with delirium incidence (Wilcoxon P=0.22) or peak severity after adjusting for confounders (log[incidence rate ratio]=0.43; P=0.14). Postoperative Day 1 change in plasma AßR was not associated with postoperative Day 1 change in plasma tau, neurofilament light, or inflammatory markers (interleukin [IL]-1ß, IL-1Ra, IL-2, IL-4, IL-6, IL-8, IL-10, and IL-12), or with operative time or low intraoperative arterial pressure. CONCLUSIONS: Perioperative changes in plasma amyloid do not appear to be associated with postoperative delirium. Our findings do not support associations of dynamic changes in amyloid with postoperative delirium. CLINICAL TRIAL REGISTRATION: .NCT03124303 and NCT01980511.


Assuntos
Doença de Alzheimer , Delírio do Despertar , Humanos , Peptídeos beta-Amiloides , Delírio do Despertar/diagnóstico , Estudos de Coortes , Biomarcadores
5.
Br J Anaesth ; 131(4): 705-714, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37541951

RESUMO

BACKGROUND: Sensory disconnection is a key feature of sleep and anaesthesia. We have proposed that predictive coding offers a framework for understanding the mechanisms of disconnection. Low doses of ketamine that do not induce disconnection should thus diminish predictive coding, but not abolish it. METHODS: Ketamine was administered to 14 participants up to a blood concentration of 0.3 µg ml-1 Participants were played a series of tones comprising a roving oddball sequence while electroencephalography evoked response potentials were recorded. We fit a Bayesian observer model to the tone sequence, correlating neural activity with the prediction errors generated by the model using linear mixed effects models and cluster-based statistics. RESULTS: Ketamine modulated prediction errors associated with the transition of one tone to the next (transitional probability), but not how often tones changed (environmental volatility), of the system. Transitional probability was reduced when blood concentrations of ketamine were increased to 0.2-0.3 µg ml-1 (96-208 ms, P=0.003); however, correlates of prediction error were still evident in the electroencephalogram (124-168 ms, P=0.003). Prediction errors related to environmental volatility were associated with electroencephalographic activity before ketamine (224-284 ms, P=0.028) and during 0.2-0.3 µg ml-1 ketamine (108-248 ms, P=0.003). At this subanaesthetic dose, ketamine did not exert a dose-dependent modulation of prediction error. CONCLUSIONS: Subanaesthetic dosing of ketamine reduced correlates of predictive coding but did not eliminate them. Future studies should evaluate whether states of sensory disconnection, including anaesthetic doses of ketamine, are associated with a complete absence of predictive coding responses. CLINICAL TRIAL REGISTRATION: NCT03284307.


Assuntos
Anestesia , Ketamina , Humanos , Teorema de Bayes , Eletroencefalografia , Potenciais Evocados , Ketamina/farmacologia
6.
Br J Anaesth ; 131(4): 694-704, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37385855

RESUMO

BACKGROUND: Unresolved surgical inflammation might induce chronic cognitive decline in older adults. Although inflammatory biomarkers have been correlated with perioperative cognitive impairment and delirium, the effects of prolonged inflammation on cognition are not well studied. This prospective cohort study investigated 1-yr dynamics in plasma interleukin-6 levels and executive function. METHODS: Patients undergoing major surgery (n=170) aged ≥65 yr completed Trail Making Test B and other neuropsychological assessments with plasma interleukin-6 levels collected on postoperative days 1-9 and 90, and at 1-yr. Mixed-effects analyses were conducted for Trail Making Test B (and other assessments), including interleukin-6 levels, time, and additional confounders (fixed effects), and a random effect for participant. RESULTS: Changes in interleukin-6 levels were associated with changes in Trail Making Test B over 1 yr in a generalised additive model (ß=0.074, P<0.001) supporting that unresolved inflammation impaired executive function. This result was robust to confounders, outlier rejection, and fitting to non-linear models. Changes in interleukin-6 levels also correlated with changes in Trail Making Test A and Controlled Oral Word Association Test. Sensitivity analyses conducted on binary definitions of cognitive decline (>1, >1.5, or >2 standard deviations from baseline) were also associated with interleukin-6 changes. CONCLUSIONS: Delayed resolution of inflammation is associated with cognitive impairment after surgery. Monitoring interleukin-6 might provide an opportunity to intervene with anti-inflammatory therapies in vulnerable patients. CLINICAL TRIAL REGISTRATION: NCT01980511, NCT03124303.


Assuntos
Disfunção Cognitiva , Interleucina-6 , Humanos , Idoso , Estudos Prospectivos , Cognição , Disfunção Cognitiva/etiologia , Testes Neuropsicológicos , Inflamação
7.
Br J Anaesth ; 130(2): e289-e297, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36192219

RESUMO

BACKGROUND: Recent trials are conflicting as to whether titration of anaesthetic dose using electroencephalography monitoring reduces postoperative delirium. Titration to anaesthetic dose itself might yield clearer conclusions. We analysed our observational cohort to clarify both dose ranges for trials of anaesthetic dose and biological plausibility of anaesthetic dose influencing delirium. METHODS: We analysed the use of sevoflurane in an ongoing prospective cohort of non-intracranial surgery. Of 167 participants, 118 received sevoflurane and were aged >65 yr. We tested associations between age-adjusted median sevoflurane (AMS) minimum alveolar concentration fraction or area under the sevoflurane time×dose curve (AUC-S) and delirium severity (Delirium Rating Scale-98). Delirium incidence was measured with 3-minute Diagnostic Confusion Assessment Method (3D-CAM) or CAM-ICU. Associations with previously identified delirium biomarkers (interleukin-8, neurofilament light, total tau, or S100B) were tested. RESULTS: Delirium severity did not correlate with AMS (Spearman's ρ=-0.014, P=0.89) or AUC-S (ρ=0.093, P=0.35), nor did delirium incidence (AMS Wilcoxon P=0.86, AUC-S P=0.78). Further sensitivity analyses including propofol dose also demonstrated no relationship. Linear regression confirmed no association for AMS in unadjusted (log (IRR)=-0.06 P=0.645) or adjusted models (log (IRR)=-0.0454, P=0.735). No association was observed for AUC-S in unadjusted (log (IRR)=0.00, P=0.054) or adjusted models (log (IRR)=0.00, P=0.832). No association of anaesthetic dose with delirium biomarkers was identified (P>0.05). CONCLUSION: Sevoflurane dose was not associated with delirium severity or incidence. Other biological mechanisms of delirium, such as inflammation and neuronal injury, appear more plausible than dose of sevoflurane. CLINICAL TRIAL REGISTRATION: NCT03124303, NCT01980511.


Assuntos
Anestésicos Inalatórios , Delírio do Despertar , Humanos , Sevoflurano/efeitos adversos , Delírio do Despertar/epidemiologia , Anestésicos Inalatórios/efeitos adversos , Estudos Prospectivos , Estudos de Coortes
8.
Br J Anaesth ; 130(2): e361-e369, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36437124

RESUMO

BACKGROUND: Ischaemic brain infarction can occur without acute neurological symptoms (covert strokes) or with symptoms (overt strokes), both associated with poor health outcomes. We conducted a pilot study of the incidence of preoperative and postoperative (intraoperative or postoperative) covert strokes, and explored the relationship of postoperative ischaemic brain injury to blood levels of neurofilament light, a biomarker of neuronal damage. METHODS: We analysed 101 preoperative (within 2 weeks of surgery) and 58 postoperative research MRIs on postoperative days 2-9 from two prospective cohorts collected at the University of Wisconsin (NCT01980511 and NCT03124303). Participants were aged >65 yr and undergoing non-intracranial, non-carotid surgery. RESULTS: Preoperative covert stroke was identified in 2/101 participants (2%; Bayesian 95% confidence interval [CI], 0.2-5.4). This rate was statistically different from the postoperative ischaemic brain injury rate of 7/58 (12%, 4.9-21.3%; P=0.01) based on postoperative imaging. However, in a smaller group of participants with paired imaging (n=30), we did not identify the same effect (P=0.67). Patients with postoperative brain injury had elevated peak neurofilament light levels (median [inter-quartile range], 2.34 [2.24-2.64] log10 pg ml-1) compared with those without (1.86 [1.48-2.21] log10 pg ml-1; P=0.025). Delirium severity scores were higher in those with postoperative brain injury (19 [17-21]) compared with those without (7 [4-12]; P=0.01). CONCLUSION: Although limited by a small sample size, these data suggest that preoperative covert stroke occurs more commonly than previously anticipated. Plasma neurofilament light is a potential screening biomarker for postoperative ischaemic brain injury.


Assuntos
Lesões Encefálicas , Acidente Vascular Cerebral , Humanos , Teorema de Bayes , Filamentos Intermediários , Projetos Piloto , Complicações Pós-Operatórias/epidemiologia , Estudos Prospectivos , Idoso , Estudos Clínicos como Assunto
9.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982709

RESUMO

Point mutations in the ß2 (N265S) and ß3 (N265M) subunits of γ-amino butyric acid type A receptors (GABAARs) that render them insensitive to the general anesthetics etomidate and propofol have been used to link modulation of ß2-GABAARs to sedation and ß3-GABAARs to surgical immobility. These mutations also alter GABA sensitivity, and mice carrying the ß3-N265M mutation have been reported to have impaired baseline memory. Here, we tested the effects of the ß2-N265M and ß3-N265M mutations on memory, movement, hotplate sensitivity, anxiety, etomidate-induced sedation, and intrinsic kinetics. We found that both ß2-N265M and ß3-N265M mice exhibited baseline deficits in the Context Preexposure Facilitation Effect learning paradigm. Exploratory activity was slightly greater in ß2-N265M mice, but there were no changes in either genotype in anxiety or hotplate sensitivity. ß2-N265M mice were highly resistant to etomidate-induced sedation, and heterozygous mice were partially resistant. In rapid solution exchange experiments, both mutations accelerated deactivation two- to three-fold compared to wild type receptors and prevented modulation by etomidate. This degree of change in the receptor deactivation rate is comparable to that produced by an amnestic dose of etomidate but in the opposite direction, indicating that intrinsic characteristics of GABAARs are optimally tuned under baseline conditions to support mnemonic function.


Assuntos
Etomidato , Propofol , Camundongos , Animais , Etomidato/farmacologia , Mutação Puntual , Receptores de GABA-A/genética , Propofol/farmacologia , Ácido gama-Aminobutírico/genética
10.
Neuroimage ; 263: 119657, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36209793

RESUMO

The neural mechanisms through which individuals lose sensory awareness of their environment during anesthesia remains poorly understood despite being of vital importance to the field. Prior research has not distinguished between sensory awareness of the environment (connectedness) and consciousness itself. In the current study, we investigated the neural correlates of sensory awareness by contrasting neural responses to an auditory roving oddball paradigm during consciousness with sensory awareness (connected consciousness) and consciousness without sensory awareness (disconnected consciousness). These states were captured using a serial awakening paradigm with the sedative alpha2 adrenergic agonist dexmedetomidine, chosen based on our published hypothesis that suppression of noradrenaline signaling is key to induce a state of sensory disconnection. High-density electroencephalography was recorded from 18 human subjects before and after administration of dexmedetomidine. By investigating event-related potentials and taking advantage of advances in Dynamic Causal Modeling (DCM), we assessed alterations in effective connectivity between nodes of a previously established auditory processing network. We found that during disconnected consciousness, the scalp-level response to standard tones produced a P3 response that was absent during connected consciousness. This P3 response resembled the response to oddball tones seen in connected consciousness. DCM showed that disconnection produced increases in standard tone feedback signaling throughout the auditory network. Simulation analyses showed that these changes in connectivity, most notably the increase in feedback from right superior temporal gyrus to right A1, can explain the new P3 response. Together these findings show that during disconnected consciousness there is a disruption of normal predictive coding processes, so that all incoming auditory stimuli become similarly surprising.


Assuntos
Estado de Consciência , Dexmedetomidina , Humanos , Estado de Consciência/fisiologia , Retroalimentação , Eletroencefalografia , Percepção Auditiva/fisiologia
11.
Br J Anaesth ; 128(6): 1006-1018, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35148892

RESUMO

BACKGROUND: How conscious experience becomes disconnected from the environment, or disappears, across arousal states is unknown. We sought to identify the neural correlates of sensory disconnection and unconsciousness using a novel serial awakening paradigm. METHODS: Volunteers were recruited for sedation with dexmedetomidine i.v., propofol i.v., or natural sleep with high-density EEG monitoring and serial awakenings to establish whether subjects were in states of disconnected consciousness or unconsciousness in the preceding 20 s. The primary outcome was classification of conscious states by occipital delta power (0.5-4 Hz). Secondary analyses included derivation (dexmedetomidine) and validation (sleep/propofol) studies of EEG signatures of conscious states. RESULTS: Occipital delta power differentiated disconnected and unconscious states for dexmedetomidine (area under the curve [AUC] for receiver operating characteristic 0.605 [95% confidence interval {CI}: 0.516; 0.694]) but not for sleep/propofol (AUC 0.512 [95% CI: 0.380; 0.645]). Distinct source localised signatures of sensory disconnection (AUC 0.999 [95% CI: 0.9954; 1.0000]) and unconsciousness (AUC 0.972 [95% CI: 0.9507; 0.9879]) were identified using support vector machine classification of dexmedetomidine data. These findings generalised to sleep/propofol (validation data set: sensory disconnection [AUC 0.743 {95% CI: 0.6784; 0.8050}]) and unconsciousness (AUC 0.622 [95% CI: 0.5176; 0.7238]). We identified that sensory disconnection was associated with broad spatial and spectral changes. In contrast, unconsciousness was associated with focal decreases in activity in anterior and posterior cingulate cortices. CONCLUSIONS: These findings may enable novel monitors of the anaesthetic state that can distinguish sensory disconnection and unconsciousness, and these may provide novel insights into the biology of arousal. CLINICAL TRIAL REGISTRATION: NCT03284307.


Assuntos
Anestesia , Dexmedetomidina , Propofol , Estado de Consciência , Dexmedetomidina/farmacologia , Eletroencefalografia , Humanos , Hipnóticos e Sedativos/farmacologia , Propofol/farmacologia , Sono , Inconsciência
12.
Br J Anaesth ; 129(2): 219-230, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35144802

RESUMO

BACKGROUND: Case-control studies have associated delirium with blood-brain barrier (BBB) permeability. However, this approach cannot determine whether delirium is attributable to high pre-existing permeability or to perioperative changes. We tested whether perioperative changes in cerebrospinal fluid/plasma albumin ratio (CPAR) and plasma S100B were associated with delirium severity. METHODS: Participants were recruited to two prospective cohort studies of non-intracranial surgery (NCT01980511, NCT03124303, and NCT02926417). Delirium severity was assessed using the Delirium Rating Scale-98. Delirium incidence was diagnosed with the 3D-Confusion Assessment Method (3D-CAM) or CAM-ICU (CAM for the ICU). CSF samples from 25 patients and plasma from 78 patients were analysed for albumin and S100B. We tested associations between change in CPAR (n=11) and S100B (n=61) and delirium, blood loss, CSF interleukin-6 (IL-6), and CSF lactate. RESULTS: The perioperative increase in CPAR and S100B correlated with delirium severity (CPAR ρ=0.78, P=0.01; S100B ρ=0.41, P<0.001), delirium incidence (CPAR P=0.012; S100B P<0.001) and CSF IL-6 (CPAR ρ=0.66 P=0.04; S100B ρ=0.75, P=0.025). Linear mixed-effect analysis also showed that decreased levels of S100B predicted recovery from delirium symptoms (P=0.001). Linear regression demonstrated that change in plasma S100B was independently associated with surgical risk, cardiovascular surgery, blood loss, and hypotension. Blood loss also correlated with CPAR (ρ=0.64, P=0.04), S100B (ρ=0.70, P<0.001), CSF lactate (R=0.81, P=0.01), and peak delirium severity (ρ=0.36, P=0.01). CONCLUSION: Postoperative delirium is associated with a breakdown in the BBB. This increased permeability is dynamic and associated with a neuroinflammatory and lactate response. Strategies to mitigate blood loss may protect the BBB.


Assuntos
Barreira Hematoencefálica , Delírio , Biomarcadores , Delírio/diagnóstico , Humanos , Interleucina-6 , Ácido Láctico , Doenças Neuroinflamatórias , Estudos Prospectivos , Subunidade beta da Proteína Ligante de Cálcio S100/líquido cefalorraquidiano
13.
J Neurophysiol ; 126(4): 1090-1100, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34406874

RESUMO

The general anesthetic etomidate, which acts through γ-aminobutyric acid type A (GABAA) receptors, impairs the formation of new memories under anesthesia. This study addresses the molecular and cellular mechanisms by which this occurs. Here, using a new line of genetically engineered mice carrying the GABAA receptor (GABAAR) ß2-N265M mutation, we tested the roles of receptors that incorporate GABAA receptor ß2 versus ß3 subunits to suppression of long-term potentiation (LTP), a cellular model of learning and memory. We found that brain slices from ß2-N265M mice resisted etomidate suppression of LTP, indicating that the ß2-GABAARs are an essential target in this model. As these receptors are most heavily expressed by interneurons in the hippocampus, this finding supports a role for interneuron modulation in etomidate control of synaptic plasticity. Nevertheless, ß2 subunits are also expressed by pyramidal neurons, so they might also contribute. Therefore, using a previously established line of ß3-N265M mice, we also examined the contributions of ß2- versus ß3-GABAARs to GABAA,slow dendritic inhibition, because dendritic inhibition is particularly well suited to controlling synaptic plasticity. We also examined their roles in long-lasting suppression of population activity through feedforward and feedback inhibition. We found that both ß2- and ß3-GABAARs contribute to GABAA,slow inhibition and that both ß2- and ß3-GABAARs contribute to feedback inhibition, whereas only ß3-GABAARs contribute to feedforward inhibition. We conclude that modulation of ß2-GABAARs is essential to etomidate suppression of LTP. Furthermore, to the extent that this occurs through GABAARs on pyramidal neurons, it is through modulation of feedback inhibition.NEW & NOTEWORTHY Etomidate exerts its anesthetic actions through GABAA receptors. However, the mechanism remains unknown. Here, using a hippocampal brain slice model, we show that ß2-GABAARs are essential to this effect. We also show that these receptors contribute to long-lasting dendritic inhibition in feedback but not feedforward inhibition of pyramidal neurons. These findings hold implications for understanding how anesthetics block memory formation and, more generally, how inhibitory circuits control learning and memory.


Assuntos
Anestésicos Intravenosos/farmacologia , Etomidato/farmacologia , Hipocampo/efeitos dos fármacos , Potenciação de Longa Duração/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Células Piramidais/efeitos dos fármacos , Receptores de GABA-A/efeitos dos fármacos , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
14.
Br J Anaesth ; 127(2): 236-244, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33865555

RESUMO

BACKGROUND: It is unclear how preoperative neurodegeneration and postoperative changes in EEG delta power relate to postoperative delirium severity. We sought to understand the relative relationships between neurodegeneration and delta power as predictors of delirium severity. METHODS: We undertook a prospective cohort study of high-risk surgical patients (>65 yr old) to identify predictors of peak delirium severity (Delirium Rating Scale-98) with twice-daily delirium assessments (NCT03124303). Participants (n=86) underwent preoperative MRI; 54 had both an MRI and a postoperative EEG. Cortical thickness was calculated from the MRI and delta power from the EEG. RESULTS: In a linear regression model, the interaction between delirium status and preoperative mean cortical thickness (suggesting neurodegeneration) across the entire cortex was a significant predictor of delirium severity (P<0.001) when adjusting for age, sex, and performance on preoperative Trail Making Test B. Next, we included postoperative delta power and repeated the analysis (n=54). Again, the interaction between mean cortical thickness and delirium was associated with delirium severity (P=0.028), as was postoperative delta power (P<0.001). When analysed across the Desikan-Killiany-Tourville atlas, thickness in multiple individual cortical regions was also associated with delirium severity. CONCLUSIONS: Preoperative cortical thickness and postoperative EEG delta power are both associated with postoperative delirium severity. These findings might reflect different underlying processes or mechanisms. CLINICAL TRIAL REGISTRATION: NCT03124303.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiopatologia , Eletroencefalografia/métodos , Delírio do Despertar/fisiopatologia , Período Pré-Operatório , Idoso , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Estudos Prospectivos , Fatores de Risco , Índice de Gravidade de Doença
15.
Br J Anaesth ; 126(2): 458-466, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33228978

RESUMO

BACKGROUND: Postoperative delirium is associated with increases in the neuronal injury biomarker, neurofilament light (NfL). Here we tested whether two other biomarkers, glial fibrillary acidic protein (GFAP) and tau, are associated with postoperative delirium. METHODS: A total of 114 surgical patients were recruited into two prospective biomarker cohort studies with assessment of delirium severity and incidence. Plasma samples were sent for biomarker analysis including tau, NfL, and GFAP, and a panel of 10 cytokines. We determined a priori to adjust for interleukin-8 (IL-8), a marker of inflammation, when assessing associations between biomarkers and delirium incidence and severity. RESULTS: GFAP concentrations showed no relationship to delirium. The change in tau from preoperative concentrations to postoperative Day 1 was greater in patients with postoperative delirium (P<0.001) and correlated with delirium severity (ρ=0.39, P<0.001). The change in tau correlated with increases in IL-8 (P<0.001) and IL-10 (P=0.0029). Linear regression showed that the relevant clinical predictors of tau changes were age (P=0.037), prior stroke/transient ischaemic attack (P=0.001), and surgical blood loss (P<0.001). After adjusting for age, sex, preoperative cognition, and change in IL-8, tau remained significantly associated with delirium severity (P=0.026). Using linear mixed effect models, only tau (not NfL or IL-8) predicted recovery from delirium (P<0.001). CONCLUSIONS: The change in plasma tau was associated with delirium incidence and severity, and resolved over time in parallel with delirium features. The impact of this putative perioperative neuronal injury biomarker on long-term cognition merits further investigation. CLINICAL TRIAL REGISTRATION: NCT02926417 and NCT03124303.


Assuntos
Delírio/epidemiologia , Complicações Pós-Operatórias/epidemiologia , Proteínas tau/sangue , Idoso , Biomarcadores/sangue , Delírio/sangue , Delírio/diagnóstico , Feminino , Proteína Glial Fibrilar Ácida/sangue , Humanos , Incidência , Interleucina-8/sangue , Masculino , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Valor Preditivo dos Testes , Estudos Prospectivos , Índice de Gravidade de Doença , Fatores de Tempo
16.
Br J Anaesth ; 126(4): 791-798, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158499

RESUMO

BACKGROUND: Myocardial and neuronal injury occur commonly after noncardiac surgery. We examined whether patients who had perioperative myocardial injury (PMI) also incurred neuronal injury, and whether myocardial and neuronal injury were associated with similar changes in inflammatory markers or overlapping clinical predictors. METHODS: A total of 114 individuals >65 yr old were recruited from two ongoing perioperative cohort studies (NCT02926417; NCT03124303). Plasma samples were collected before and daily after surgery to process assays for troponin I (PMI), neurofilament light (NfL; neuronal injury) and multiplexed plasma cytokines (inflammation). The primary outcome was the change in NfL in individuals with PMI (>40 pg ml-1 increase in troponin above preoperative values). We conducted logistic regression to identify if there were shared clinical predictors for myocardial and neuronal injury. RESULTS: Ninety-six patients had paired NfL and troponin data. Twenty-three of 94 subjects (24%) with PMI had greater increases in NfL (median [inter-quartile range, IQR]: 29 pg ml-1 [3-95 pg ml-1]; 2.8-fold increase) compared with subjects with no troponin increase (8 pg ml-1 [3-20]; 1.3-fold increase; P=0.008). PMI was associated with increased interleukin (IL)-1ra (P=0.005), IL-2 (P=0.045), IL-8 (P=0.002), and IL-10 (P<0.001). Logistic regression showed that intraoperative hypotension was associated with PMI (P=0.043). Preoperative stroke (P=0.041) and blood loss (P=0.002), but not intraoperative hypotension, were associated with increased NfL. CONCLUSIONS: Postoperative troponin increases were associated with changes in NfL and inflammatory cytokines. Increases in troponin, but not NfL, were associated with intraoperative hypotension, suggesting differences in the mechanisms contributing to neuronal and myocardial injury.


Assuntos
Proteínas de Neurofilamentos/sangue , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/diagnóstico , Troponina I/sangue , Idoso , Biomarcadores/sangue , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
17.
Proc Natl Acad Sci U S A ; 115(24): E5605-E5613, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844163

RESUMO

Various forms of synaptic plasticity underlie aspects of learning and memory. Synaptic augmentation is a form of short-term plasticity characterized by synaptic enhancement that persists for seconds following specific patterns of stimulation. The mechanisms underlying this form of plasticity are unclear but are thought to involve residual presynaptic Ca2+ Here, we report that augmentation was reduced in cultured mouse hippocampal neurons lacking the Ca2+ sensor, Doc2; other forms of short-term enhancement were unaffected. Doc2 binds Ca2+ and munc13 and translocates to the plasma membrane to drive augmentation. The underlying mechanism was not associated with changes in readily releasable pool size or Ca2+ dynamics, but rather resulted from superpriming a subset of synaptic vesicles. Hence, Doc2 forms part of the Ca2+-sensing apparatus for synaptic augmentation via a mechanism that is molecularly distinct from other forms of short-term plasticity.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Sinapses/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Plasticidade Neuronal/fisiologia , Neurônios/metabolismo , Ratos , Transmissão Sináptica/fisiologia
18.
Int J Mol Sci ; 21(24)2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33333797

RESUMO

Background: Mice carrying the GABAA receptor ß3(N265M) point mutation, which renders receptors incorporating ß3-subunits insensitive to many general anesthetics, have been used experimentally to link modulation of different receptor subtypes to distinct behavioral endpoints. Remarkably, however, the effect of the mutation on the susceptibility to modulation by isoflurane (a standard reference agent for inhalational vapors) has never been tested directly. Therefore, we compared the modulation by isoflurane of expressed α5ß3(N265M)γ2L receptors with their wild type counterparts. Methods: Using whole-cell electrophysiological recording and rapid solution exchange techniques, we tested the effects of isoflurane at concentrations ranging from 80 µM to 320 µM on currents activated by 1 µM GABA. We measured drug modulation of wild-type α5ß3γ2L GABAA receptors and their counterparts harboring the ß3(N265M) mutation. Results: Currents elicited by GABA were enhanced two- to four-fold by isoflurane, in a concentration-dependent manner. Under the same conditions, receptors incorporating the ß3(N265M) mutation were enhanced by approximately 1.5- to two-fold; i.e., modulation by isoflurane was attenuated by approximately one-half. Direct activation by isoflurane was also present in mutant receptors but also attenuated. Conclusions: In contrast to the complete insensitivity of ß3(N265M) mutant receptors to etomidate and propofol, the mutation has only a partial effect on receptor modulation by isoflurane. Therefore, the persistence of isoflurane effects in mutant mice does not exclude a possible contribution of ß3-GABAA receptors.


Assuntos
Anestésicos Inalatórios/farmacologia , Isoflurano/farmacologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/farmacologia , Animais , Etomidato/farmacologia , Células HEK293 , Humanos , Camundongos Transgênicos , Técnicas de Patch-Clamp , Mutação Puntual , Propofol/farmacologia , Receptores de GABA-A/fisiologia , Proteínas Recombinantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA