Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 131(21): 2367-2378, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29618478

RESUMO

The phagocyte reduced NAD phosphate (NADPH) oxidase generates superoxide, the precursor to reactive oxygen species (ROS) that has both antimicrobial and immunoregulatory functions. Inactivating mutations in NADPH oxidase alleles cause chronic granulomatous disease (CGD), characterized by enhanced susceptibility to life-threatening microbial infections and inflammatory disorders; hypomorphic NADPH oxidase alleles are associated with autoimmunity. Impaired apoptotic cell (AC) clearance is implicated as an important contributing factor in chronic inflammation and autoimmunity, but the role of NADPH oxidase-derived ROS in this process is incompletely understood. Here, we demonstrate that phagocytosis of AC (efferocytosis) potently activated NADPH oxidase in mouse peritoneal exudate macrophages (PEMs). ROS generation was dependent on macrophage CD11b, Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response 88 (MyD88), and was also regulated by phosphatidylinositol 3-phosphate binding to the p40 phox oxidase subunit. Maturation of efferosomes containing apoptotic neutrophils was significantly delayed in CGD PEMs, including acidification and acquisition of proteolytic activity, and was associated with slower digestion of apoptotic neutrophil proteins. Treatment of wild-type macrophages with the vacuolar-type H+ ATPase inhibitor bafilomycin also delayed proteolysis within efferosomes, showing that luminal acidification was essential for efficient digestion of efferosome proteins. Finally, cross-presentation of AC-associated antigens by CGD PEMs to CD8 T cells was increased. These studies unravel a key role for the NADPH oxidase in the disposal of ACs by inflammatory macrophages. The oxidants generated promote efferosome maturation and acidification that facilitate the degradation of ingested ACs.


Assuntos
Apoptose , Macrófagos/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/metabolismo , Animais , Antígeno CD11b/metabolismo , Ativação Enzimática , Macrófagos/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , Neutrófilos/imunologia , Peroxidase/metabolismo , Fagocitose , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
2.
Blood ; 126(25): 2724-33, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26443623

RESUMO

The leukocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase generates reactive oxygen species essential in microbial killing and regulation of inflammation. Inactivating mutations in this enzyme lead to chronic granulomatous disease (CGD), associated with increased susceptibility to both pyogenic infections and to inflammatory disorders. The role of the NADPH oxidase in regulating inflammation driven by nonmicrobial stimuli is poorly understood. Here, we show that NADPH oxidase deficiency enhances the early local release of interleukin-1α (IL-1α) in response to damaged cells, promoting an excessive granulocyte colony-stimulating factor (G-CSF)-regulated neutrophilic response and prolonged inflammation. In peritoneal inflammation elicited by tissue injury, X-linked Cybb-null (X-CGD) mice exhibited increased release of IL-1α and IL-1 receptor -mediated G-CSF production. In turn, higher levels of systemic G-CSF increased peripheral neutrophilia, which amplified neutrophilic peritoneal inflammation in X-CGD mice. Dampening early neutrophil recruitment by neutralization of IL-1α, G-CSF, or neutrophil depletion itself promoted resolution of otherwise prolonged inflammation in X-CGD. IL-1ß played little role. Thus, we identified an excessive IL-1α/G-CSF response as a major driver of enhanced sterile inflammation in CGD in the response to damaged cells. More broadly, these results provide new insights into the regulation of sterile inflammation, and identify the NADPH oxidase in regulating the amplitude of the early neutrophilic response.


Assuntos
Fator Estimulador de Colônias de Granulócitos/imunologia , Inflamação/imunologia , Interleucina-1alfa/imunologia , NADPH Oxidases/imunologia , Neutrófilos/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Doença Granulomatosa Crônica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/imunologia
3.
Blood ; 116(24): 5419-22, 2010 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20813896

RESUMO

Inherited hematologic defects that lack an in vivo selective advantage following gene correction may benefit from effective yet minimally toxic cytoreduction of endogenous hematopoietic stem cells (HSCs) prior to transplantation of gene-modified HSCs. We studied the efficacy of administering a novel sequential treatment of parenteral ACK2, an antibody that blocks KIT, followed by low-dose irradiation (LD-IR) for conditioning of wild-type and X-linked chronic granulomatous disease (X-CGD) mice. In wild-type mice, combining ACK2 and LD-IR profoundly decreased endogenous competitive long-term HSC repopulating activity, and permitted efficient and durable donor-derived HSC engraftment after congenic transplantation. ACK2 alone was ineffective. The combination of ACK2 and LD-IR was also effective conditioning in X-CGD mice for engraftment of X-CGD donor HSCs transduced ex vivo with a lentiviral vector. We conclude that combining ACK2 with LD-IR is a promising approach to effectively deplete endogenous HSCs and facilitate engraftment of transplanted donor HSCs.


Assuntos
Anticorpos/administração & dosagem , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-kit/imunologia , Condicionamento Pré-Transplante/métodos , Animais , Anticorpos/uso terapêutico , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Imunocompetência , Camundongos , Transdução Genética , Irradiação Corporal Total
4.
Exp Hematol ; 30(11): 1324-32, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12423686

RESUMO

OBJECTIVE: We investigated low-dose radiation conditioning for the transplantation of retrovirus-transduced cells in a C57Bl6/J murine model. MATERIALS AND METHODS: The effect of low-dose radiation on stem cell function was investigated using a competitive repopulation assay. Stem cell function of marrow cells that underwent a retroviral-mediated gene transfer (RMGT) protocol was examined by this assay, and donor chimerism of these cells when transplanted into 160-cGy conditioned syngeneic hosts was compared to fresh marrow. RESULTS: Irradiation with 300 or 160 cGy substantially decreased stem cell function as measured by competitive repopulation. Animals conditioned with 160 cGy and transplanted with 20 x 10(6) fresh marrow cells permitted donor cell engraftment of 53.6% +/- 11.4% 6 months after transplant compared to 100% donor cell engraftment after 1100 cGy irradiation. Lymphoid and myeloid engraftment did not significantly differ from total engraftment in submyeloablated hosts. When transplanted into lethally irradiated hosts, the competitive repopulating activity of marrow treated with a single dose of 5-fluorouracil followed by ex vivo culture according to a standard RMGT protocol was equal to 5-fluorouracil-only treated marrow. However, cells treated with 5-fluorouracil or 5-fluorouracil plus ex vivo culture for RMGT repopulated less well than fresh marrow cells in 160 cGy conditioned hosts. CONCLUSIONS: Low-dose irradiation decreases host stem cell function, allowing engraftment of both fresh and RMGT protocol-treated marrow, although the engraftment of 5-fluorouracil-treated cells was reduced at least two-fold, and 5-fluorouracil plus RMGT protocol-treated cells at least three-fold, compared to fresh marrow. Modification of current RMGT protocols may be important for optimizing engraftment under these conditions.


Assuntos
Transplante de Medula Óssea , Medula Óssea/efeitos da radiação , Vetores Genéticos/genética , Sobrevivência de Enxerto/efeitos da radiação , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos da radiação , Quimera por Radiação , Coleta de Tecidos e Órgãos/métodos , Condicionamento Pré-Transplante/métodos , Irradiação Corporal Total/métodos , Animais , Animais Congênicos , Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/efeitos da radiação , Células Cultivadas/transplante , Relação Dose-Resposta à Radiação , Estudos de Viabilidade , Fluoruracila/toxicidade , Genes Reporter , Interleucina-6/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Doses de Radiação , Proteínas Recombinantes/farmacologia , Organismos Livres de Patógenos Específicos , Fator de Células-Tronco/farmacologia , Doadores de Tecidos , Transfecção
5.
Exp Hematol ; 32(12): 1255-64, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15588950

RESUMO

OBJECTIVE: Nonmyeloablative conditioning regimens for marrow transplantation are desirable in many settings. Because repeated doses of the antimetabolite 5-fluorouracil (5-FU) decreases marrow long-term repopulating ability (LTRA) upon transplantation into lethally irradiated hosts, we hypothesized that mice given sequential doses of 5-FU (termed paired dose 5-FU) may permit substantial syngeneic marrow engraftment. METHODS: C57Bl/6 or X-linked chronic granulomatous disease (X-CGD) mice were administered 5-FU (150 mg/kg) on days -5 and -1. Assessment of host marrow phenotype and repopulating ability occurred on day 0. Transplantation of syngeneic donor marrow occurred on day 0 or day +15. RESULTS: We confirmed that the number of Sca-1+lin- cells and the LTRA of marrow from paired dose 5-FU-treated animals were diminished. C57Bl/6 hosts conditioned with paired doses of 5-FU followed by transplantation of 20 x 10(6) fresh B6.SJL marrow cells on day 0 displayed 44.9% +/- 7.1% donor chimerism 2 months posttransplant, and 34.4% +/- 8.6% donor chimerism 6 months posttransplant. In contrast, paired dose 5-FU-conditioned hosts transplanted with similar numbers of donor cells on day +15 exhibited only 3.4% +/- 1.2% donor chimerism at 2 months. Paired dose 5-FU-conditioned X-CGD hosts transplanted with MSCV-m91Neo-transduced X-CGD marrow averaged 6.6% +/- 2.3% (range, 4%-10%) NADPH oxidase-reconstituted neutrophils 12-16 months after transplant. CONCLUSION: These findings support the concept that impairment of host stem cell competitiveness may be an important mechanism for permitting engraftment of donor cells, and suggest that only a brief period of modest host stem cell impairment may be necessary to achieve substantial donor cell engraftment.


Assuntos
Antimetabólitos/administração & dosagem , Transplante de Medula Óssea , Fluoruracila/administração & dosagem , Sobrevivência de Enxerto , Quimera por Radiação , Condicionamento Pré-Transplante , Animais , Antígenos Ly/sangue , Transplante de Medula Óssea/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Sobrevivência de Enxerto/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos da radiação , Doença Granulomatosa Crônica , Hematopoese/efeitos dos fármacos , Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Proteínas de Membrana/sangue , Camundongos , Camundongos Knockout , Neutrófilos , Quimera por Radiação/sangue , Condicionamento Pré-Transplante/métodos , Transplante Isogênico , Irradiação Corporal Total
6.
Hum Gene Ther Clin Dev ; 24(2): 86-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23845071

RESUMO

Chronic granulomatous disease (CGD) is a primary immunodeficiency characterized by impaired antimicrobial activity in phagocytic cells. As a monogenic disease affecting the hematopoietic system, CGD is amenable to gene therapy. Indeed in a phase I/II clinical trial, we demonstrated a transient resolution of bacterial and fungal infections. However, the therapeutic benefit was compromised by the occurrence of clonal dominance and malignant transformation demanding alternative vectors with equal efficacy but safety-improved features. In this work we have developed and tested a self-inactivating (SIN) gammaretroviral vector (SINfes.gp91s) containing a codon-optimized transgene (gp91(phox)) under the transcriptional control of a myeloid promoter for the gene therapy of the X-linked form of CGD (X-CGD). Gene-corrected cells protected X-CGD mice from Aspergillus fumigatus challenge at low vector copy numbers. Moreover, the SINfes.gp91s vector generates substantial amounts of superoxide in human cells transplanted into immunodeficient mice. In vitro genotoxicity assays and longitudinal high-throughput integration site analysis in transplanted mice comprising primary and secondary animals for 11 months revealed a safe integration site profile with no signs of clonal dominance.


Assuntos
Gammaretrovirus/genética , Vetores Genéticos/metabolismo , Doença Granulomatosa Crônica/terapia , Animais , Aspergillus fumigatus/patogenicidade , Células Cultivadas , Metilação de DNA , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Terapia Genética , Vetores Genéticos/genética , Humanos , Pneumopatias/microbiologia , Pneumopatias/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , NADPH Oxidase 2 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Fenótipo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-fes/genética , Superóxidos/metabolismo
7.
Blood Cells Mol Dis ; 33(3): 365-71, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15528159

RESUMO

We previously demonstrated that low-dose radiation conditioning impairs murine hematopoietic stem cell function, permitting engraftment of syngeneic fresh and transduced marrow cells. In this study, we directly examined the ability of low-dose radiation conditioning to permit engraftment of transduced long-term repopulating cells in murine X-linked chronic granulomatous disease (X-CGD), which closely mimics the human disease. X-CGD mice conditioned with 160 cGy were transplanted with 20 x 10(6) MSCV-m91Neo-transduced syngeneic X-CGD marrow cells. The presence of oxidase-positive neutrophils in two independent cohorts of transplanted 160-cGy-conditioned X-CGD recipients was determined by nitroblue tetrazolium testing. Transplanted X-CGD mice (n = 9 total) displayed 1-17% oxidase-positive neutrophils 6-16 months post-transplant. Retroviral marking and NADPH-oxidase-positive neutrophils persisted through serial transplantation, verifying that stem cells were transduced. These results establish that low-dose radiation conditioning results in durable engraftment of low but potentially clinically relevant numbers of functionally reconstituted blood cells in a murine model of X-CGD.


Assuntos
Terapia Genética , Doença Granulomatosa Crônica/terapia , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/enzimologia , Glicoproteínas de Membrana/genética , NADPH Oxidases/genética , Condicionamento Pré-Transplante , Animais , Terapia Genética/métodos , Doença Granulomatosa Crônica/genética , Doença Granulomatosa Crônica/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , NADPH Oxidase 2 , NADPH Oxidases/metabolismo , Condicionamento Pré-Transplante/métodos , Irradiação Corporal Total
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA