Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Small ; 20(10): e2304152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37888807

RESUMO

The magnetic coupling of a set of SrFe12 O19 /CoFe2 O4 nanocomposites is investigated. Advanced electron microscopy evidences the structural coherence and texture at the interfaces of the nanostructures. The fraction of the lower anisotropy phase (CoFe2 O4 ) is tuned to assess the limits that define magnetically exchange-coupled interfaces by performing magnetic remanence, first-order reversal curves (FORCs), and relaxation measurements. By combining these magnetometry techniques and the structural and morphological information from X-ray diffraction, electron microscopy, and Mössbauer spectrometry, the exchange intergranular interaction is evidenced, and the critical thickness within which coupled interfaces have a uniform reversal unraveled.

2.
Phys Chem Chem Phys ; 26(7): 6325-6334, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38314612

RESUMO

A set of ∼9 nm CoFe2O4 nanoparticles substituted with Zn2+ and Ni2+ was prepared by thermal decomposition of metallic acetylacetonate precursors to correlate the effects of replacement of Co2+ with the resulting magnetic properties. Due to the distinct selectivity of these cations for the spinel ferrite crystal sites, we show that it is possible to tailor the magnetic anisotropy, saturation magnetization, and interparticle interactions of the nanoparticles during the synthesis stage. This approach unlocks new possibilities for enhancing the performance of spinel ferrite nanoparticles in specific applications. Particularly, our study shows that the replacement of Co2+ by 48% of Zn2+ ions led to an increase in saturation magnetization of approximately 40% from ∼103 A m2 kg-1 to ∼143 A m2 kg-1, whereas the addition of Ni2+ at a similar percentage led to an ∼30% decrease in saturation magnetization to 68-72 A m2 kg-1. The results of calculations based on the two-sublattice Néel model of magnetization match the experimental findings, demonstrating the model's effectiveness in the strategic design of spinel ferrite nanoparticles with targeted magnetic properties through doping/inversion degree engineering.

3.
Phys Chem Chem Phys ; 26(17): 13020-13033, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38275012

RESUMO

The physico-chemical investigation of superparamagnetic MCM41 like materials prepared by the novel combination of high energy ball milling and a liquid crystal templating method is presented. Structural, morphological, textural, thermal, and preliminary magnetic characterization demonstrated the successful combination of the two synthesis techniques, avoiding the problems associated with the current methods used for the preparation of magnetic ordered mesoporous silica. MCM41 like materials with high specific surface area values (625-720 m2 g-1) and high mesopore volumes in the range 1-0.7 cm3 g-1 were obtained. The ordered mesoporous structure and accessible pores were maintained after the inclusion of increasing amounts of the magnetic component in the silica structure. All the samples showed superparamagnetic behaviour.

4.
Phys Chem Chem Phys ; 25(40): 27817-27828, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37814895

RESUMO

A set of non-stoichiometric Zn-Co-ferrite nanoparticles (NPs) was prepared by thermal decomposition of metallic complexes, in the presence of oleic acid, and, after a ligand-exchange process, was coated by a hydrophilic surfactant: these NPs were used as seeds in a sol-gel self-combustion synthesis to prepare nanocomposites (NCs) with a fixed weight ratio. Our focus here is the development of an efficient synthetic approach to control the magnetic coupling between a hard-magnetic matrix (Sr-ferrite) and NPs. The physico-chemical synthetic conditions (temperature, pH, colloidal stability) were optimized in order to tune their effect on the final particles' agglomeration in the matrix. We demonstrate that our synthetic approach is a novel way to produce strongly magnetically coupled NCs, where the final extrinsic properties could be tuned by controlling (i) the agglomeration of seeds in the matrix and (ii) their elemental doping.

5.
Small ; 18(28): e2106762, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35689307

RESUMO

Dense systems of magnetic nanoparticles may exhibit dipolar collective behavior. However, two fundamental questions remain unsolved: i) whether the transition temperature may be affected by the particle anisotropy or it is essentially determined by the intensity of the interparticle dipolar interactions, and ii) what is the minimum ratio of dipole-dipole interaction (Edd ) to nanoparticle anisotropy (Kef V, anisotropy⋅volume) energies necessary to crossover from individual to collective behavior. A series of particle assemblies with similarly intense dipolar interactions but widely varying anisotropy is studied. The Kef  is tuned through different degrees of cobalt-doping in maghemite nanoparticles, resulting in a variation of nearly an order of magnitude. All the bare particle compacts display collective behavior, except the one made with the highest anisotropy particles, which presents "marginal" features. Thus, a threshold of Kef V/Edd  ≈ 130 to suppress collective behavior is derived, in good agreement with Monte Carlo simulations. This translates into a crossover value of ≈1.7 for the easily accessible parameter TMAX (interacting)/TMAX (non-interacting) (ratio of the peak temperatures of the zero-field-cooled magnetization curves of interacting and dilute particle systems), which is successfully tested against the literature to predict the individual-like/collective behavior of any given interacting particle assembly comprising relatively uniform particles.


Assuntos
Magnetismo , Nanopartículas , Anisotropia , Cobalto , Transição de Fase
6.
Nanotechnology ; 31(2): 025707, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603864

RESUMO

Over the last two decades, iron oxide based nanoparticles ferrofluids have attracted significant attention for a wide range of applications. For the successful use of these materials in biotechnology and energy, surface coating and specific functionalization is critical to achieve high dispersibility and colloidal stability of the nanoparticles in the ferrofluids. In view of this, the magnetic behavior of clusters of ultra-small MnFe2O4 nanoparticles covered by bovine serum albumin, which is known as a highly biocompatible and environmentally friendly surfactant, is investigated by magnetization measurements, and numerical simulations at an atomic and mesoscopic scale. The coating process with albumin produces a change in the structure, actual size and shape distribution of clusters of exchange coupled particles, giving rise to a distribution of blocking temperatures. The coated system exhibits a superspin glass (SSG) behavior with the SSG freezing temperatures similar to the uncoated ones, providing evidence that the strength of the dipolar interactions is not affected by the presence of the albumin. The DFT calculations show that the albumin coating reduces the surface anisotropy and the saturation magnetization in the nanoparticles leading to lower values of the coercive field in agreement with the experimental findings. Our results clearly demonstrate that the albumin coated clusters of MnFe2O4 particles are ideal systems for energy and biomedical applications since colloidal and thermal stability as well as biosafety is obtained through the albumin coating.

7.
Nanotechnology ; 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33086203

RESUMO

In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for Magnetic Fluid Hyperthermia applications. To pursue this goal, Fe3O4/ZnxCo1-xFe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ~1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn+Co) at%) changes from 33 at% to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of magnetic fluid hyperthermia of 0.1 wt% of these particles dispersed in water, DMEM (Dulbecco modified Eagles minimal essential medium) and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W/g, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that requiere smaller particle sizes .

8.
Nanotechnology ; 32(6): 065703, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210620

RESUMO

In this work it is shown a precise way to optimize the heat generation in high viscosity magnetic colloids, by adjusting the Néel relaxation time in core/shell bimagnetic nanoparticles, for magnetic fluid hyperthermia (MFH) applications. To pursue this goal, Fe3O4/Zn x Co1-x Fe2O4 core/shell nanoparticles were synthesized with 8.5 nm mean core diameter, encapsulated in a shell of ∼1.1 nm of thickness, where the Zn atomic ratio (Zn/(Zn + Co) at%) changes from 33 to 68 at%. The magnetic measurements are consistent with a rigid interface coupling between the core and shell phases, where the effective magnetic anisotropy systematically decreases when the Zn concentration increases, without a significant change of the saturation magnetization. Experiments of MFH of 0.1 wt% of these particles dispersed in water, in Dulbecco modified Eagles minimal essential medium, and a high viscosity butter oil, result in a large specific loss power (SLP), up to 150 W g-1, when the experiments are performed at 571 kHz and 200 Oe. The SLP was optimized adjusting the shell composition, showing a maximum for intermediate Zn concentration. This study shows a way to maximize the heat generation in viscous media like cytosol, for those biomedical applications that require smaller particle sizes.

9.
Anal Bioanal Chem ; 411(25): 6615-6624, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31359119

RESUMO

Histamine, a biogenic amine, is abundant in fermented foods and beverages, notably wine. A high intake of this monoamine may produce adverse reactions in humans, which may be severe in individuals with a reduced capacity to catabolise extrinsic histamine. Thus, control of histamine concentration during wine production and before distribution is advisable. Simple, rapid, point-of-use bioanalytical platforms are needed because traditional methods for the detection and quantification of histamine are expensive and time-consuming. This work applies the lateral flow immunoassay technique to histamine detection. Superparamagnetic particle labels, and an inductive sensor designed to read the test line in the immunoassay, enable magnetic quantification of the molecule. The system is calibrated with histamine standards in the interval of interest for wine production. A commercial optical strip reader is used for comparison measurements. The lateral flow system has a limit of detection of 1.2 and 1.5 mg/L for the inductive and optical readers, respectively. The capability of the inductive system for histamine quantification is demonstrated for wine samples at different processing points (at the end of alcoholic fermentation, at the end of malolactic fermentation, in freshly bottled wine, and in reserve wine). The results are validated by ultra-high-performance liquid chromatography. Graphical abstract.


Assuntos
Histamina/análise , Vinho/análise , Aminas Biogênicas/análise , Desenho de Equipamento , Imunoensaio/métodos , Limite de Detecção , Nanopartículas de Magnetita/química , Fitas Reagentes/análise
10.
Small ; 12(3): 301-6, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26619158

RESUMO

Manganese oxide nanoparticles (MONPs) are capable of time-dependent magnetic resonance imaging contrast switching as well as releasing a surface-bound drug. MONPs give T2/T2* contrast, but dissolve and release T1-active Mn(2+) and L-3,4-dihydroxyphenylalanine. Complementary images are acquired with a single contrast agent, and applications toward Parkinson's disease are suggested.


Assuntos
Materiais Revestidos Biocompatíveis/química , Meios de Contraste/química , Sistemas de Liberação de Medicamentos/métodos , Levodopa/farmacologia , Imageamento por Ressonância Magnética/métodos , Compostos de Manganês/química , Nanopartículas/química , Óxidos/química , Animais , Nanopartículas/ultraestrutura , Ratos , Sus scrofa , Água/química
12.
Nano Lett ; 13(7): 3334-9, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23746148

RESUMO

We have used X-ray magnetic circular dichroism and magnetometry to study isolated Fe@Cr core-shell nanoparticles with an Fe core diameter of 2.7 nm (850 atoms) and a Cr shell thickness varying between 1 and 2 monolayers. The addition of Cr shells significantly reduces the spin moment but does not change the orbital moment. At least two Cr atomic layers are required to stabilize a ferromagnetic/antiferromagnetic interface and generate the associated exchange bias and increase in coercivity.

13.
Artigo em Inglês | MEDLINE | ID: mdl-38963630

RESUMO

Solid waste resulting from bauxite ore (red mud) was converted into useful products consisting in hydrogarnet together with zeolite. Red mud (RM) transformation from disposal material into new source was carried out using potassium hydroxide as an activator and hydrothermal process (HY) or vapor phase crystallization (VPC) approach. HY process was performed at 60, 90, and 130 °C whereas during the VPC method, red mud was contacted only with vapor from the distilled water heated at 60 and 90 °C. The results indicate the formation of katoite and zeolite L (LTL topology) with both approaches. All the synthetic products display magnetic properties. In addition, a preliminary investigation on arsenic removal from drinking water (from 59 to 86%), makes the synthetic materials appealing for environmental applications. Finally, the synthesis of a large amount of very useful newly-formed phases using vapor molecules confirms the efficiency of the innovative and green VPC process in waste material transformation.

14.
Sci Rep ; 14(1): 12529, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822019

RESUMO

The polyol synthesis of CoO nanoparticles (NPs) is typically conducted by dissolving and heating cobalt acetate tetrahydrate and water in diethylene glycol (DEG). This process yields aggregates of approximately 100 nm made of partially aligned primary crystals. However, the synthesis demands careful temperature control to allow the nucleation of CoO while simultaneously preventing reduction, caused by the activity of DEG. This restriction hinders the flexibility to freely adjust synthesis conditions, impeding the ability to obtain particles with varied morpho-structural properties, which, in turn, directly impact chemical and physical attributes. In this context, the growth of CoO NPs in polyol was studied focusing on the effect of the polyol chain length and the synthesis temperature at two different water/cations ratios. During this investigation, we found that longer polyol chains remove the previous limits of the method, allowing the tuning of aggregate size (20-150 nm), shape (spherical-octahedral), and crystalline length (8-35 nm). Regarding the characterization, our focus revolved around investigating the magnetic properties inherent in the synthesized products. From this point of view, two pivotal findings emerged. Firstly, we identified small quantities of a layered hydroxide ferromagnetic intermediate, which acted as interference in our measurements. This intermediate exhibited magnetic properties consistent with features observed in other publications on CoO produced in systems compatible with the intermediate formation. Optimal synthetic conditions that prevent the impurity from forming were found. This resolution clarifies several ambiguities existing in literature about CoO low-temperature magnetic behavior. Secondly, a regular relationship of the NPs' TN with their crystallite size was found, allowing us to regulate TN over ~ 80 K. For the first time, a branching was found in this structure-dependent magnetic feature, with samples of spheroidal morphology consistently having lower magnetic temperatures, when compared to samples with faceted/octahedral shape, providing compelling evidence for a novel physical parameter influencing the TN of a material. These two findings contribute to the understanding of the fundamental properties of CoO and antiferromagnetic materials.

15.
Nanoscale ; 15(45): 18500-18510, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37942933

RESUMO

The direct integration of 1D magnetic nanostructures into electronic circuits is crucial for realizing their great potential as components in magnetic storage, logical devices, and spintronic applications. Here, we present a novel template-free technique for producing magnetic nanochains and nanowires using directed self-assembly of gas-phase-generated metallic nanoparticles. The 1D nanostructures can be self-assembled along most substrate surfaces and can be freely suspended over micrometer distances, allowing for direct incorporation into different device architectures. The latter is demonstrated by a one-step integration of nanochains onto a pre-patterned Si chip and the fabrication of devices exhibiting magnetoresistance. Moreover, fusing the nanochains into nanowires by post-annealing significantly enhances the magnetic properties, with a 35% increase in the coercivity. Using magnetometry, X-ray microscopy, and micromagnetic simulations, we demonstrate how variations in the orientation of the magnetocrystalline anisotropy and the presence of larger multi-domain particles along the nanochains play a key role in the domain formation and magnetization reversal. Furthermore, it is shown that the increased coercivity in the nanowires can be attributed to the formation of a uniform magnetocrystalline anisotropy along the wires and the onset of exchange interactions.

16.
Nanomaterials (Basel) ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38202551

RESUMO

Ti3C2Tx MXene is one of the most comprehensively studied 2D materials in terms of its adsorptive, transport, and catalytic properties, cytotoxic performance, etc. Still, conventional MXene synthesis approaches provide low single-flake MXene yield and frequently uncontrollable properties, demanding further post-processing. The MXene family also lacks magnetism, which is helpful for producing effective nanoadsorbents as their magnetic decantation is the cheapest and most convenient way to remove the spent adsorbent from water. Composite materials consisting of magnetic nanoparticles grown on top of MXene flakes are commonly used to provide magnetic properties to the resulting nanocomposite. In this paper, we study the possibility to delaminate multilayer Ti3C2Tx MXene sheets directly by growing iron oxide magnetic nanoparticles inside their interlayer spacing. We find out that, with a mass fraction of particles comparable or exceeding that of MXenes, their growth is accompanied by an effective enhancement of single-layer MXene yield and suitable magnetic properties of the resulting composite. The developed approach can be further used for simplifying synthesis protocols to obtain magnetic MXene-based nanoadsorbents with tunable properties.

17.
Nanoscale Adv ; 4(20): 4366-4372, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321142

RESUMO

The effect of clustering induced by albumin coating on the magnetic behaviour of ultra-small MnFe2O4 nanoparticles has been systematically investigated and compared with that in pure Mn ferrite nanoparticle dense assembly, using a mesoscopic scale approach and numerical simulations reproducing the experimental findings well. Our results provide evidence that in the coated system, the interplay between intra-particle and intra-cluster exchange interactions strongly affects the exchange bias and coercive field values, with the dipolar interactions playing a minor role. Instead, the albumin coating does not affect the thermal stability of the observed superspin glass phase, the freezing temperature being similar in the coated and uncoated systems.

18.
Nanoscale Res Lett ; 17(1): 98, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36219264

RESUMO

Despite modern preparation techniques offer the opportunity to tailor the composition, size, and shape of magnetic nanoparticles, understanding and hence controlling the magnetic properties of such entities remains a challenging task, due to the complex interplay between the volume-related properties and the phenomena occurring at the particle's surface. The present work investigates spinel iron oxide nanoparticles as a model system to quantitatively analyze the crossover between the bulk and the surface-dominated magnetic regimes. The magnetic properties of ensembles of nanoparticles with an average size in the range of 5-13 nm are compared. The role of surface anisotropy and the effect of oleic acid, one of the most common and versatile organic coatings, are discussed. The structural and morphological properties are investigated by X-ray diffraction and transmission electron microscopy. The size dependence of the surface contribution to the effective particle anisotropy and the magnetic structure are analyzed by magnetization measurements and in-field Mössbauer spectrometry. The structural data combined with magnetometry and Mössbauer spectrometry analysis are used to shed light on this complex scenario revealing a crossover between volume and surface-driven properties in the range of 5-7 nm.

19.
ACS Appl Nano Mater ; 5(10): 14871-14881, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36338325

RESUMO

In this work, we demonstrate that the reduction of the local internal stress by a low-temperature solvent-mediated thermal treatment is an effective post-treatment tool for magnetic hardening of chemically synthesized nanoparticles. As a case study, we used nonstoichiometric cobalt ferrite particles of an average size of 32(8) nm synthesized by thermal decomposition, which were further subjected to solvent-mediated annealing at variable temperatures between 150 and 320 °C in an inert atmosphere. The postsynthesis treatment produces a 50% increase of the coercive field, without affecting neither the remanence ratio nor the spontaneous magnetization. As a consequence, the energy product and the magnetic energy storage capability, key features for applications as permanent magnets and magnetic hyperthermia, can be increased by ca. 70%. A deep structural, morphological, chemical, and magnetic characterization reveals that the mechanism governing the coercive field improvement is the reduction of the concomitant internal stresses induced by the low-temperature annealing postsynthesis treatment. Furthermore, we show that the medium where the mild annealing process occurs is essential to control the final properties of the nanoparticles because the classical annealing procedure (T > 350 °C) performed on a dried powder does not allow the release of the lattice stress, leading to the reduction of the initial coercive field. The strategy here proposed, therefore, constitutes a method to improve the magnetic properties of nanoparticles, which can be particularly appealing for those materials, as is the case of cobalt ferrite, currently investigated as building blocks for the development of rare-earth free permanent magnets.

20.
Polymers (Basel) ; 14(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36432934

RESUMO

Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO3, BTO) and/or ferrimagnetic (Zn0.25Co0.75Fe2O4, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA