Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(2): 485-497.e18, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31543266

RESUMO

Niemann-Pick type C (NPC) proteins are essential for sterol homeostasis, believed to drive sterol integration into the lysosomal membrane before redistribution to other cellular membranes. Here, using a combination of crystallography, cryo-electron microscopy, and biochemical and in vivo studies on the Saccharomyces cerevisiae NPC system (NCR1 and NPC2), we present a framework for sterol membrane integration. Sterols are transferred between hydrophobic pockets of vacuolar NPC2 and membrane-protein NCR1. NCR1 has its N-terminal domain (NTD) positioned to deliver a sterol to a tunnel connecting NTD to the luminal membrane leaflet 50 Å away. A sterol is caught inside this tunnel during transport, and a proton-relay network of charged residues in the transmembrane region is linked to this tunnel supporting a proton-driven transport mechanism. We propose a model for sterol integration that clarifies the role of NPC proteins in this essential eukaryotic pathway and that rationalizes mutations in patients with Niemann-Pick disease type C.


Assuntos
Proteínas de Transporte/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Esteróis/metabolismo , Proteínas de Transporte Vesicular/química , Transporte Biológico , Microscopia Crioeletrônica , Cristalografia , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Domínios Proteicos , Vacúolos/metabolismo
2.
Nature ; 609(7927): 605-610, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35768502

RESUMO

Auxins are hormones that have central roles and control nearly all aspects of growth and development in plants1-3. The proteins in the PIN-FORMED (PIN) family (also known as the auxin efflux carrier family) are key participants in this process and control auxin export from the cytosol to the extracellular space4-9. Owing to a lack of structural and biochemical data, the molecular mechanism of PIN-mediated auxin transport is not understood. Here we present biophysical analysis together with three structures of Arabidopsis thaliana PIN8: two outward-facing conformations with and without auxin, and one inward-facing conformation bound to the herbicide naphthylphthalamic acid. The structure forms a homodimer, with each monomer divided into a transport and scaffold domain with a clearly defined auxin binding site. Next to the binding site, a proline-proline crossover is a pivot point for structural changes associated with transport, which we show to be independent of proton and ion gradients and probably driven by the negative charge of the auxin. The structures and biochemical data reveal an elevator-type transport mechanism reminiscent of bile acid/sodium symporters, bicarbonate/sodium symporters and sodium/proton antiporters. Our results provide a comprehensive molecular model for auxin recognition and transport by PINs, link and expand on a well-known conceptual framework for transport, and explain a central mechanism of polar auxin transport, a core feature of plant physiology, growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Proteínas de Membrana Transportadoras , Antiporters/metabolismo , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Bicarbonatos/metabolismo , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação , Transporte Biológico , Herbicidas/metabolismo , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Ftalimidas/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Prolina/metabolismo , Domínios Proteicos , Multimerização Proteica , Prótons , Sódio/metabolismo , Simportadores/metabolismo
3.
Trends Biochem Sci ; 48(11): 937-948, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37574372

RESUMO

Auxins are pivotal plant hormones that regulate plant growth and transmembrane polar auxin transport (PAT) direct patterns of development. The PIN-FORMED (PIN) family of membrane transporters mediate auxin export from the plant cell and play crucial roles in PAT. Here we describe the recently solved structures of PIN transporters, PIN1, PIN3, and PIN8, and also their mechanisms of substrate recognition and transport of auxin. We compare structures of PINs in both inward- and outward-facing conformations, as well as PINs with different binding configurations for auxin. By this comparative analysis, a model emerges for an elevator transport mechanism. Central structural elements necessary for function are identified, and we show that these are shared with other distantly related protein families.

4.
Proc Natl Acad Sci U S A ; 121(15): e2315575121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38568972

RESUMO

The membrane protein Niemann-Pick type C1 (NPC1, named NCR1 in yeast) is central to sterol homeostasis in eukaryotes. Saccharomyces cerevisiae NCR1 is localized to the vacuolar membrane, where it is suggested to carry sterols across the protective glycocalyx and deposit them into the vacuolar membrane. However, documentation of a vacuolar glycocalyx in fungi is lacking, and the mechanism for sterol translocation has remained unclear. Here, we provide evidence supporting the presence of a glycocalyx in isolated S. cerevisiae vacuoles and report four cryo-EM structures of NCR1 in two distinct conformations, named tense and relaxed. These two conformations illustrate the movement of sterols through a tunnel formed by the luminal domains, thus bypassing the barrier presented by the glycocalyx. Based on these structures and on comparison with other members of the Resistance-Nodulation-Division (RND) superfamily, we propose a transport model that links changes in the luminal domains with a cycle of protonation and deprotonation within the transmembrane region of the protein. Our model suggests that NPC proteins work by a generalized RND mechanism where the proton motive force drives conformational changes in the transmembrane domains that are allosterically coupled to luminal/extracellular domains to promote sterol transport.


Assuntos
Saccharomyces cerevisiae , Esteróis , Esteróis/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte/metabolismo , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Proteína C1 de Niemann-Pick/metabolismo , Glicoproteínas de Membrana/metabolismo
5.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272288

RESUMO

KdpFABC is an oligomeric K+ transport complex in prokaryotes that maintains ionic homeostasis under stress conditions. The complex comprises a channel-like subunit (KdpA) from the superfamily of K+ transporters and a pump-like subunit (KdpB) from the superfamily of P-type ATPases. Recent structural work has defined the architecture and generated contradictory hypotheses for the transport mechanism. Here, we use substrate analogs to stabilize four key intermediates in the reaction cycle and determine the corresponding structures by cryogenic electron microscopy. We find that KdpB undergoes conformational changes consistent with other representatives from the P-type superfamily, whereas KdpA, KdpC, and KdpF remain static. We observe a series of spherical densities that we assign as K+ or water and which define a pathway for K+ transport. This pathway runs through an intramembrane tunnel in KdpA and delivers ions to sites in the membrane domain of KdpB. Our structures suggest a mechanism where ATP hydrolysis is coupled to K+ transfer between alternative sites in KdpB, ultimately reaching a low-affinity site where a water-filled pathway allows release of K+ to the cytoplasm.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Adenosina Trifosfatases/genética , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Transporte de Íons , Proteínas de Membrana/genética , Modelos Moleculares , Óperon , Potássio/metabolismo
6.
J Exp Bot ; 74(22): 6893-6903, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37279330

RESUMO

Auxin is a crucial plant hormone that controls a multitude of developmental processes. The directional movement of auxin between cells is largely facilitated by canonical PIN-FORMED proteins in the plasma membrane. In contrast, non-canonical PIN-FORMED proteins and PIN-LIKES proteins appear to reside mainly in the endoplasmic reticulum. Despite recent progress in identifying the roles of the endoplasmic reticulum in cellular auxin responses, the transport dynamics of auxin at the endoplasmic reticulum are not well understood. PIN-LIKES are structurally related to PIN-FORMED proteins, and recently published structures of these transporters have provided new insights into PIN-FORMED proteins and PIN-LIKES function. In this review, we summarize current knowledge on PIN-FORMED proteins and PIN-LIKES in intracellular auxin transport. We discuss the physiological properties of the endoplasmic reticulum and the consequences for transport processes across the ER membrane. Finally, we highlight the emerging role of the endoplasmic reticulum in the dynamics of cellular auxin signalling and its impact on plant development.


Assuntos
Proteínas de Arabidopsis , Reguladores de Crescimento de Plantas , Transporte Biológico/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Arabidopsis/metabolismo
7.
Nat Rev Mol Cell Biol ; 12(1): 60-70, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21179061

RESUMO

Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.


Assuntos
Membrana Celular/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Membrana Celular/química , Humanos
8.
Nature ; 546(7660): 681-685, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28636601

RESUMO

Cellular potassium import systems play a fundamental role in osmoregulation, pH homeostasis and membrane potential in all domains of life. In bacteria, the kdp operon encodes a four-subunit potassium pump that maintains intracellular homeostasis, cell shape and turgor under conditions in which potassium is limiting. This membrane complex, called KdpFABC, has one channel-like subunit (KdpA) belonging to the superfamily of potassium transporters and another pump-like subunit (KdpB) belonging to the superfamily of P-type ATPases. Although there is considerable structural and functional information about members of both superfamilies, the mechanism by which uphill potassium transport through KdpA is coupled with ATP hydrolysis by KdpB remains poorly understood. Here we report the 2.9 Å X-ray structure of the complete Escherichia coli KdpFABC complex with a potassium ion within the selectivity filter of KdpA and a water molecule at a canonical cation site in the transmembrane domain of KdpB. The structure also reveals two structural elements that appear to mediate the coupling between these two subunits. Specifically, a protein-embedded tunnel runs between these potassium and water sites and a helix controlling the cytoplasmic gate of KdpA is linked to the phosphorylation domain of KdpB. On the basis of these observations, we propose a mechanism that repurposes protein channel architecture for active transport across biomembranes.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de Membrana/química , Potássio/metabolismo , Cristalografia por Raios X , Proteínas de Membrana/metabolismo , Modelos Moleculares , Fosforilação
10.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33397696

RESUMO

Enzymatic depolymerization of seaweed polysaccharides is gaining interest for the production of functional oligosaccharides and fermentable sugars. Herein, we describe a thermostable alginate lyase that belongs to polysaccharide lyase family 17 (PL17) and was derived from an Arctic Mid-Ocean Ridge (AMOR) metagenomics data set. This enzyme, AMOR_PL17A, is a thermostable exolytic oligoalginate lyase (EC 4.2.2.26), which can degrade alginate, poly-ß-d-mannuronate, and poly-α-l-guluronate within a broad range of pHs, temperatures, and salinity conditions. Site-directed mutagenesis showed that tyrosine Y251, previously suggested to act as a catalytic acid, indeed is essential for catalysis, whereas mutation of tyrosine Y446, previously proposed to act as a catalytic base, did not affect enzyme activity. The observed reaction products are protonated and deprotonated forms of the 4,5-unsaturated uronic acid monomer, Δ, two hydrates of DEH (4-deoxy-l-erythro-5-hexulosuronate), which are formed after ring opening, and, finally, two epimers of a 5-member hemiketal called 4-deoxy-d-manno-hexulofuranosidonate (DHF), formed through intramolecular cyclization of hydrated DEH. The detection and nuclear magnetic resonance (NMR) assignment of these hemiketals refine our current understanding of alginate degradation.IMPORTANCE The potential markets for seaweed-derived products and seaweed processing technologies are growing, yet commercial enzyme cocktails for complete conversion of seaweed to fermentable sugars are not available. Such an enzyme cocktail would require the catalytic properties of a variety of different enzymes, where fucoidanases, laminarinases, and cellulases together with endo- and exo-acting alginate lyases would be the key enzymes. Here, we present an exo-acting alginate lyase that efficiently produces monomeric sugars from alginate. Since it is only the second characterized exo-acting alginate lyase capable of degrading alginate at a high industrially relevant temperature (≥60°C), this enzyme may be of great biotechnological and industrial interest. In addition, in-depth NMR-based structural elucidation revealed previously undescribed rearrangement products of the unsaturated monomeric sugars generated from exo-acting lyases. The insight provided by the NMR assignment of these products facilitates future assessment of product formation by alginate lyases.


Assuntos
Alginatos/metabolismo , Polissacarídeo-Liases/metabolismo , DNA de Plantas , Metagenômica , Picea , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polissacarídeo-Liases/química , Polissacarídeo-Liases/genética , Temperatura
11.
Biochemistry ; 59(45): 4407-4420, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33141558

RESUMO

Niemann Pick type C2 (NPC2) is a small sterol binding protein in the lumen of late endosomes and lysosomes. We showed recently that the yeast homologue of NPC2 together with its binding partner NCR1 mediates integration of ergosterol, the main sterol in yeast, into the vacuolar membrane. Here, we study the binding specificity and the molecular details of lipid binding to yeast NPC2. We find that NPC2 binds fluorescence- and spin-labeled analogues of phosphatidylcholine (PC), phosphatidylserine, phosphatidylinositol (PI), and sphingomyelin. Spectroscopic experiments show that NPC2 binds lipid monomers in solution but can also interact with lipid analogues in membranes. We further identify ergosterol, PC, and PI as endogenous NPC2 ligands. Using molecular dynamics simulations, we show that NPC2's binding pocket can adapt to the ligand shape and closes around bound ergosterol. Hydrophobic interactions stabilize the binding of ergosterol, but binding of phospholipids is additionally stabilized by electrostatic interactions at the mouth of the binding site. Our work identifies key residues that are important in stabilizing the binding of a phospholipid to yeast NPC2, thereby rationalizing future mutagenesis studies. Our results suggest that yeast NPC2 functions as a general "lipid solubilizer" and binds a variety of amphiphilic lipid ligands, possibly to prevent lipid micelle formation inside the vacuole.


Assuntos
Proteínas de Transporte/metabolismo , Metabolismo dos Lipídeos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Proteínas de Transporte/química , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química
12.
Mol Membr Biol ; 35(1): 21-38, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31259644

RESUMO

In bacteria, K+ is used to maintain cell volume and osmotic potential. Homeostasis normally involves a network of constitutively expressed transport systems, but in K+ deficient environments, the KdpFABC complex uses ATP to pump K+ into the cell. This complex appears to be a hybrid of two types of transporters, with KdpA descending from the superfamily of K+ transporters and KdpB belonging to the superfamily of P-type ATPases. Studies of enzymatic activity documented a catalytic cycle with hallmarks of classical P-type ATPases and studies of ion transport indicated that K+ import into the cytosol occurred in the second half of this cycle in conjunction with hydrolysis of an aspartyl phosphate intermediate. Atomic structures of the KdpFABC complex from X-ray crystallography and cryo-EM have recently revealed conformations before and after formation of this aspartyl phosphate that appear to contradict the functional studies. Specifically, structural comparisons with the archetypal P-type ATPase, SERCA, suggest that K+ transport occurs in the first half of the cycle, accompanying formation of the aspartyl phosphate. Further controversy has arisen regarding the path by which K+ crosses the membrane. The X-ray structure supports the conventional view that KdpA provides the conduit, whereas cryo-EM structures suggest that K+ moves from KdpA through a long, intramembrane tunnel to reach canonical ion binding sites in KdpB from which they are released to the cytosol. This review discusses evidence supporting these contradictory models and identifies key experiments needed to resolve discrepancies and produce a unified model for this fascinating mechanistic hybrid.


Assuntos
Adenosina Trifosfatases , Proteínas de Transporte de Cátions , Proteínas de Escherichia coli , Escherichia coli/enzimologia , Complexos Multiproteicos/química , Potássio , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/metabolismo , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Transporte de Íons/fisiologia , Complexos Multiproteicos/metabolismo , Potássio/química , Potássio/metabolismo
13.
Nature ; 499(7456): 107-10, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23685453

RESUMO

Eukaryotic Ca(2+) regulation involves sequestration into intracellular organelles, and expeditious Ca(2+) release into the cytosol is a hallmark of key signalling transduction pathways. Bulk removal of Ca(2+) after such signalling events is accomplished by members of the Ca(2+):cation (CaCA) superfamily. The CaCA superfamily includes the Na(+)/Ca(2+) (NCX) and Ca(2+)/H(+) (CAX) antiporters, and in mammals the NCX and related proteins constitute families SLC8 and SLC24, and are responsible for the re-establishment of Ca(2+) resting potential in muscle cells, neuronal signalling and Ca(2+) reabsorption in the kidney. The CAX family members maintain cytosolic Ca(2+) homeostasis in plants and fungi during steep rises in intracellular Ca(2+) due to environmental changes, or following signal transduction caused by events such as hyperosmotic shock, hormone response and response to mating pheromones. The cytosol-facing conformations within the CaCA superfamily are unknown, and the transport mechanism remains speculative. Here we determine a crystal structure of the Saccharomyces cerevisiae vacuolar Ca(2+)/H(+) exchanger (Vcx1) at 2.3 Å resolution in a cytosol-facing, substrate-bound conformation. Vcx1 is the first structure, to our knowledge, within the CAX family, and it describes the key cytosol-facing conformation of the CaCA superfamily, providing the structural basis for a novel alternating access mechanism by which the CaCA superfamily performs high-throughput Ca(2+) transport across membranes.


Assuntos
Antiporters/química , Antiporters/metabolismo , Cálcio/metabolismo , Citosol/metabolismo , Prótons , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Transporte de Íons , Mathanococcus/química , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade
14.
Nature ; 496(7446): 533-6, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23542591

RESUMO

Phosphate is crucial for structural and metabolic needs, including nucleotide and lipid synthesis, signalling and chemical energy storage. Proton-coupled transporters of the major facilitator superfamily (MFS) are essential for phosphate uptake in plants and fungi, and also have a function in sensing external phosphate levels as transceptors. Here we report the 2.9 Å structure of a fungal (Piriformospora indica) high-affinity phosphate transporter, PiPT, in an inward-facing occluded state, with bound phosphate visible in the membrane-buried binding site. The structure indicates both proton and phosphate exit pathways and suggests a modified asymmetrical 'rocker-switch' mechanism of phosphate transport. PiPT is related to several human transporter families, most notably the organic cation and anion transporters of the solute carrier family (SLC22), which are implicated in cancer-drug resistance. We modelled representative cation and anion SLC22 transporters based on the PiPT structure to surmise the structural basis for substrate binding and charge selectivity in this important family. The PiPT structure demonstrates and expands on principles of substrate transport by the MFS transporters and illuminates principles of phosphate uptake in particular.


Assuntos
Basidiomycota/química , Células Eucarióticas/química , Proteínas de Transporte de Fosfato/química , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Biológicos , Modelos Moleculares , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Conformação Proteica , Prótons , Relação Estrutura-Atividade
15.
Proc Natl Acad Sci U S A ; 113(17): 4711-6, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27078104

RESUMO

Cancerous cells have an acutely increased demand for energy, leading to increased levels of human glucose transporter 1 (hGLUT1). This up-regulation suggests hGLUT1 as a target for therapeutic inhibitors addressing a multitude of cancer types. Here, we present three inhibitor-bound, inward-open structures of WT-hGLUT1 crystallized with three different inhibitors: cytochalasin B, a nine-membered bicyclic ring fused to a 14-membered macrocycle, which has been described extensively in the literature of hGLUTs, and two previously undescribed Phe amide-derived inhibitors. Despite very different chemical backbones, all three compounds bind in the central cavity of the inward-open state of hGLUT1, and all binding sites overlap the glucose-binding site. The inhibitory action of the compounds was determined for hGLUT family members, hGLUT1-4, using cell-based assays, and compared with homology models for these hGLUT members. This comparison uncovered a probable basis for the observed differences in inhibition between family members. We pinpoint regions of the hGLUT proteins that can be targeted to achieve isoform selectivity, and show that these same regions are used for inhibitors with very distinct structural backbones. The inhibitor cocomplex structures of hGLUT1 provide an important structural insight for the design of more selective inhibitors for hGLUTs and hGLUT1 in particular.


Assuntos
Citocalasinas/química , Transportador de Glucose Tipo 1/antagonistas & inibidores , Transportador de Glucose Tipo 1/ultraestrutura , Glucose/química , Fenilalanina/análogos & derivados , Sequência de Aminoácidos , Sítios de Ligação , Simulação por Computador , Sequência Conservada , Humanos , Modelos Químicos , Modelos Moleculares , Fenilalanina/química , Ligação Proteica , Conformação Proteica
16.
Nature ; 475(7354): 59-64, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21716286

RESUMO

Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes' and Wilson's diseases.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Legionella pneumophila/química , Adenosina Trifosfatases/genética , Sítios de Ligação , Transporte Biológico , Cálcio , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , ATPases Transportadoras de Cobre , Cristalografia por Raios X , Citoplasma/metabolismo , Degeneração Hepatolenticular/genética , Humanos , Síndrome dos Cabelos Torcidos/genética , Modelos Moleculares , Mutação de Sentido Incorreto/genética , Estrutura Terciária de Proteína , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , Relação Estrutura-Atividade
17.
Annu Rev Plant Biol ; 75(1): 185-209, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38211951

RESUMO

Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.


Assuntos
Ácidos Indolacéticos , Proteínas de Membrana Transportadoras , Proteínas de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Plantas/metabolismo , Transporte Biológico , Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia
18.
Nat Biotechnol ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267759

RESUMO

Clonal propagation of plants by induction of adventitious roots (ARs) from stem cuttings is a requisite step in breeding programs. A major barrier exists for propagating valuable plants that naturally have low capacity to form ARs. Due to the central role of auxin in organogenesis, indole-3-butyric acid is often used as part of commercial rooting mixtures, yet many recalcitrant plants do not form ARs in response to this treatment. Here we describe the synthesis and screening of a focused library of synthetic auxin conjugates in Eucalyptus grandis cuttings and identify 4-chlorophenoxyacetic acid-L-tryptophan-OMe as a competent enhancer of adventitious rooting in a number of recalcitrant woody plants, including apple and argan. Comprehensive metabolic and functional analyses reveal that this activity is engendered by prolonged auxin signaling due to initial fast uptake and slow release and clearance of the free auxin 4-chlorophenoxyacetic acid. This work highlights the utility of a slow-release strategy for bioactive compounds for more effective plant growth regulation.

19.
Nature ; 450(7172): 1111-4, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075595

RESUMO

A prerequisite for life is the ability to maintain electrochemical imbalances across biomembranes. In all eukaryotes the plasma membrane potential and secondary transport systems are energized by the activity of P-type ATPase membrane proteins: H+-ATPase (the proton pump) in plants and fungi, and Na+,K+-ATPase (the sodium-potassium pump) in animals. The name P-type derives from the fact that these proteins exploit a phosphorylated reaction cycle intermediate of ATP hydrolysis. The plasma membrane proton pumps belong to the type III P-type ATPase subfamily, whereas Na+,K+-ATPase and Ca2+-ATPase are type II. Electron microscopy has revealed the overall shape of proton pumps, however, an atomic structure has been lacking. Here we present the first structure of a P-type proton pump determined by X-ray crystallography. Ten transmembrane helices and three cytoplasmic domains define the functional unit of ATP-coupled proton transport across the plasma membrane, and the structure is locked in a functional state not previously observed in P-type ATPases. The transmembrane domain reveals a large cavity, which is likely to be filled with water, located near the middle of the membrane plane where it is lined by conserved hydrophilic and charged residues. Proton transport against a high membrane potential is readily explained by this structural arrangement.


Assuntos
Arabidopsis/enzimologia , Membrana Celular/enzimologia , Bombas de Próton/química , Sítios de Ligação , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Cristalografia por Raios X , Transporte de Íons , Modelos Moleculares , Fosforilação , Bombas de Próton/metabolismo , Prótons , Eletricidade Estática , Homologia Estrutural de Proteína
20.
Nature ; 450(7172): 1043-9, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18075585

RESUMO

The Na+,K+-ATPase generates electrochemical gradients for sodium and potassium that are vital to animal cells, exchanging three sodium ions for two potassium ions across the plasma membrane during each cycle of ATP hydrolysis. Here we present the X-ray crystal structure at 3.5 A resolution of the pig renal Na+,K+-ATPase with two rubidium ions bound (as potassium congeners) in an occluded state in the transmembrane part of the alpha-subunit. Several of the residues forming the cavity for rubidium/potassium occlusion in the Na+,K+-ATPase are homologous to those binding calcium in the Ca2+-ATPase of sarco(endo)plasmic reticulum. The beta- and gamma-subunits specific to the Na+,K+-ATPase are associated with transmembrane helices alphaM7/alphaM10 and alphaM9, respectively. The gamma-subunit corresponds to a fragment of the V-type ATPase c subunit. The carboxy terminus of the alpha-subunit is contained within a pocket between transmembrane helices and seems to be a novel regulatory element controlling sodium affinity, possibly influenced by the membrane potential.


Assuntos
Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Sítios de Ligação , Cátions Monovalentes/metabolismo , Membrana Celular/metabolismo , Cristalização , Cristalografia por Raios X , Fluoretos , Rim/enzimologia , Compostos de Magnésio , Potenciais da Membrana , Modelos Moleculares , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA