Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunol Rev ; 301(1): 222-241, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33682158

RESUMO

Buruli ulcer is an emerging infectious disease associated with high morbidity and unpredictable outbreaks. It is caused by Mycobacterium ulcerans, a slow-growing pathogen evolutionarily shaped by the acquisition of a plasmid involved in the production of a potent macrolide-like cytotoxin and by genome rearrangements and downsizing. These events culminated in an uncommon infection pattern, whereby M. ulcerans is both able to induce the initiation of the inflammatory cascade and the cell death of its proponents, as well as to survive within the phagosome and in the extracellular milieu. In such extreme conditions, the host is sentenced to rely on a highly orchestrated genetic landscape to be able to control the infection. We here revisit the dynamics of M. ulcerans infection, drawing parallels from other mycobacterioses and integrating the most recent knowledge on its evolution and pathogenicity in its interaction with the host immune response.


Assuntos
Úlcera de Buruli , Mycobacterium ulcerans , Úlcera de Buruli/genética , Humanos , Mycobacterium ulcerans/genética
2.
Appl Environ Microbiol ; 85(17)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31227554

RESUMO

Acinetobacter baumannii is emerging as a major nosocomial pathogen in intensive care units. The bacterial capsules are considered major virulence factors, and the particular A. baumannii capsular type K2 has been associated with high antibiotic resistance. In this study, we identified a K2 capsule-specific depolymerase in a bacteriophage tail spike C terminus, a fragment that was heterologously expressed, and its antivirulence properties were assessed by in vivo experiments. The K2 depolymerase is active under a broad range of environmental conditions and is highly thermostable, with a melting point (Tm ) at 67°C. In the caterpillar larva model, the K2 depolymerase protects larvae from bacterial infections, using either pretreatments or with single-enzyme injection after bacterial challenge, in a dose-dependent manner. In a mouse sepsis model, a single K2 depolymerase intraperitoneal injection of 50 µg is able to protect 60% of mice from an otherwise deadly infection, with a significant reduction in the proinflammatory cytokine profile. We showed that the enzyme makes bacterial cells fully susceptible to the host complement system killing effect. Moreover, the K2 depolymerase is highly refractory to resistance development, which makes these bacteriophage-derived capsular depolymerases useful antivirulence agents against multidrug-resistant A. baumannii infections.IMPORTANCEAcinetobacter baumannii is an important nosocomial pathogen resistant to many, and sometimes all, antibiotics. The A. baumannii K2 capsular type has been associated with elevated antibiotic resistance. The capsular depolymerase characterized here fits the new trend of alternative antibacterial agents needed against multidrug-resistant pathogens. They are highly specific, stable, and refractory to resistance, as they do not kill bacteria per se; instead, they remove bacterial surface polysaccharides, which diminish the bacterial virulence and expose them to the host immune system.


Assuntos
Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/fisiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Glicosídeo Hidrolases/genética , Mariposas/microbiologia , Sepse/microbiologia , Acinetobacter baumannii/genética , Animais , Proteínas de Bactérias/metabolismo , Glicosídeo Hidrolases/metabolismo , Larva/crescimento & desenvolvimento , Larva/microbiologia , Camundongos , Mariposas/crescimento & desenvolvimento
3.
Curr Issues Mol Biol ; 25: 169-198, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28875944

RESUMO

Mycobacteria are intracellular pathogens that have macrophages as their main host cells. However, macrophages are also the primary line of defense against invading microorganisms. To survive in the intracellular compartment, virulent mycobacteria have developed several strategies to modulate the activation and the effector functions of macrophages. Despite this, antigen-specific T cells develop during infection. While T cell responses are critical for protection they can also contribute to the success of mycobacteria as human pathogens, as immunopathology associated with these responses facilitates transmission. Here, we provide a brief overview of different immune-evasion strategies of mycobacteria and their impact on the protective immune response. This understanding will further our knowledge in host-pathogen interactions and may provide critical insights for the development of novel host-specific therapies.


Assuntos
Células Dendríticas/imunologia , Evasão da Resposta Imune , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Mycobacterium/imunologia , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Citocinas/genética , Citocinas/imunologia , Células Dendríticas/microbiologia , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Macrófagos/microbiologia , Mycobacterium/crescimento & desenvolvimento , Mycobacterium/patogenicidade , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Proteínas NLR/genética , Proteínas NLR/imunologia , Fagossomos/imunologia , Transdução de Sinais , Linfócitos T/microbiologia , Receptores Toll-Like/genética , Receptores Toll-Like/imunologia
4.
Bioorg Med Chem Lett ; 27(3): 403-405, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28057421

RESUMO

Ethionamide (ETH) is an important second-line antituberculosis drug used for the treatment of patients infected with multidrug-resistant Mycobacterium tuberculosis. Recently, we reported that the loading of ETH into thermally carbonized-porous silicon (TCPSi) nanoparticles enhanced the solubility and permeability of ETH at different pH-values and also increased its metabolization process. Based on these results, we synthesized carboxylic acid functionalized thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) conjugated with ETH and its antimicrobial effect was evaluated against Mycobacterium tuberculosis strain H37Rv. The activity of the conjugate was increased when compared to free-ETH, which suggests that the nature of the synergy between the NPs and ETH is likely due to the weakening of the bacterial cell wall that improves conjugate-penetration. These ETH-conjugated NPs have great potential in reducing dosing frequency of ETH in the treatment of multidrug-resistant tuberculosis (MDR-TB).


Assuntos
Antituberculosos/química , Etionamida/química , Nanopartículas/química , Silício/química , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Etionamida/farmacologia , Etionamida/uso terapêutico , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Tamanho da Partícula , Porosidade , Solubilidade , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
5.
Eur J Immunol ; 44(3): 856-66, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24227629

RESUMO

The activation of TLRs by microbial molecules triggers intracellular-signaling cascades and the expression of cytokines such as IL-10. Il10 expression is tightly controlled to ensure effective immune responses, while preventing pathology. Maximal TLR-induction of Il10 transcription in macrophages requires signaling through the MAPKs, ERK, and p38. Signals via p38 downstream of TLR4 activation also regulate IL-10 at the post-transcriptional level, but whether this mechanism operates downstream of other TLRs is not clear. We compared the regulation of IL-10 production in TLR2 and TLR4-stimulated BM-derived macrophages and found different stability profiles for the Il10 mRNA. TLR2 signals promoted a rapid induction and degradation of Il10 mRNA, whereas TLR4 signals protected Il10 mRNA from rapid degradation, due to the activation of Toll/IL-1 receptor domain-containing adaptor inducing IFN-ß (TRIF) and enhanced p38 signaling. This differential post-transcriptional mechanism contributes to a stronger induction of IL-10 secretion via TLR4. Our study provides a molecular mechanism for the differential IL-10 production by TLR2- or TLR4-stimulated BMMs, showing that p38-induced stability is not common to all TLR-signaling pathways. This mechanism is also observed upon bacterial activation of TLR2 or TLR4 in BMMs, contributing to IL-10 modulation in these cells in an infection setting.


Assuntos
Interleucina-10/genética , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Processamento Pós-Transcricional do RNA , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Bactérias/imunologia , Ativação Enzimática , Feminino , Regulação da Expressão Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Tristetraprolina/deficiência , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
J Clin Microbiol ; 53(5): 1506-14, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25694526

RESUMO

The existing data support Portugal as the western European country with the highest HIV-1 subtype diversity. However, detailed phylogenetic studies of Portuguese HIV-1 epidemics are still scarce. Thus, our main goal was to analyze the phylodynamics of a local HIV-1 infection in the Portuguese region of Minho. Molecular epidemiological analysis was applied to data from 289 HIV-1-infected individuals followed at the reference hospital of the province of Minho, Portugal, at which isolated viruses had been sequenced between 2000 and 2012. Viruses of the G (29.1%) and B (27.0%) subtypes were the most frequent, followed by recombinant forms (17.6%) and the C (14.5%), F1 (7.3%), and A1 (4.2%) subtypes. Multinomial logistic regression revealed that the odds of being infected with the A1 and F1 subtypes increased over the years compared with those with B, G, or C subtypes or recombinant viruses. As expected, polyphyletic patterns suggesting multiple and old introductions of the B and G subtypes were found. However, transmission clusters of non-B and non-G viruses among native individuals were also found, with the dates of the most recent common ancestor estimated to be in the early 2000s. Our study supports that the HIV-1 subtype diversity in the Portuguese region of Minho is high and has been increasing in a manner that is apparently driven by factors other than immigration and international travel. Infections with A1 and F1 viruses in the region of Minho are becoming established and are mainly found in sexually transmitted clusters, reinforcing the need for more efficacious control measures targeting this infection route.


Assuntos
Epidemias , Variação Genética , Genótipo , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Infecções por HIV/transmissão , HIV-1/isolamento & purificação , Humanos , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Filogenia , Portugal/epidemiologia , Prevalência , Análise de Sequência de DNA , Adulto Jovem
8.
Mol Biol Evol ; 30(6): 1326-36, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23449927

RESUMO

Tuberculosis (TB) is a global health problem estimated to kill 1.4 million people per year. Recent advances in the genomics of the causative agents of TB, bacteria known as the Mycobacterium tuberculosis complex (MTBC), have allowed a better comprehension of its population structure and provided the foundation for molecular evolution analyses. These studies are crucial for a better understanding of TB, including the variation of vaccine efficacy and disease outcome, together with the emergence of drug resistance. Starting from the analysis of 73 publicly available genomes from all the main MTBC lineages, we have screened for evidences of positive selection, a set of 576 genes previously associated with drug resistance or encoding membrane proteins. As expected, because antibiotics constitute strong selective pressure, some of the codons identified correspond to the position of confirmed drug-resistance-associated substitutions in the genes embB, rpoB, and katG. Furthermore, we identified diversifying selection in specific codons of the genes Rv0176 and Rv1872c coding for MCE1-associated transmembrane protein and a putative l-lactate dehydrogenase, respectively. Amino acid sequence analyses showed that in Rv0176, sites undergoing diversifying selection were in a predicted antigen region that varies between "modern" lineages and "ancient" MTBC/BCG strains. In Rv1872c, some of the sites under selection are predicted to impact protein function and thus might result from metabolic adaptation. These results illustrate that diversifying selection in MTBC is happening as a consequence of both antibiotic treatment and other evolutionary pressures.


Assuntos
Genes Bacterianos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Antituberculosos/farmacologia , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Evolução Molecular , Proteínas de Membrana/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de Proteína
9.
Eur J Med Chem ; 268: 116297, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38458108

RESUMO

A series of novel 9-alkyl/aryl-2-aryl-6-carbamoylpurines were synthesized, and their activity against Mycobacterium tuberculosis strain H37Rv was assessed. The SAR analysis on the first set of derivatives, with an alkyl or aryl unit at N-9 and a phenolic unit at C-2, showed that the activity depends on the purine ring substituents at N-9 and C-2. A phenyl group at N-9 combined with a 3-hydroxyphenyl or 4-hydroxyphenyl at C-2 improve the activity. The most active compound of this set has a phenyl group at N-9 and a 4-hydroxyphenyl group at C-2, displaying an IC90 = 1.2 µg/mL and a selectivity index higher than 25.5. This compound served as a Hit to design the second set of derivatives. A phenyl group at N-9 was maintained, and the group at C-2 was diversified. The SAR analysis showed that the aryl unit at C-2 must have an oxygen or nitrogen atom bonded in the para position. A proton, a small alkyl or a substituted aryl group may also be bonded to the oxygen. The compound with the 4-methoxyphenyl group at C-2, 1Bd, exhibits the highest activity with an IC90 < 0.19 µg/mL. This compound is highly potent against M. tuberculosis strain H37Rv and non-toxic for VERO mammalian cells with an SI > 153.8. Compound 1Bd was also non-cytotoxic against primary macrophage cultures at IC90, 2xIC90, and 10xIC90 and significantly reduced the bacterial load in M. tuberculosis-infected macrophages at the same concentrations. Compound 1Bd showed a favorable pharmacokinetic profile when administered orally, with major lung and liver accumulation. In vivo antimycobacterial efficacy of 1Bd was tested at 25 mg/kg. At the tested regimen, a decrease in bacterial burden was observed in the liver. Optimization of the treatment regimen should be performed to fully potentiate the in vivo efficacy of our lead molecule, particularly in the lung, the main target organ of M. tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Antituberculosos/farmacologia , Testes de Sensibilidade Microbiana , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Oxigênio , Relação Estrutura-Atividade , Mamíferos
10.
Gels ; 10(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920914

RESUMO

Cellulose nanofibrils (CNFs) are particles with a high aspect ratio. Typically, chemically pre-treated CNFs (containing anionic or cationic charged groups) consist of long fibrils (up to 2 µm) with very low thickness (less than 10 nm). Derived from their high aspect ratio, CNFs form strong hydrogels with high elasticity at low concentrations. Thus, CNF suspensions appear as an interesting rheology modifier to be applied in cosmetics, paints, foods, and as a mineral suspending agent, among other applications. The high viscosity results from the strong 3D fibril network, which is related to the good fibrillation of the material, allowing the nanofibrils to overlap. The overlap concentration (c*) was found to vary from ca. 0.13 to ca. 0.60 wt.% depending on the type and intensity of the pre-treatment applied during the preparation of the CNFs. The results confirm the higher tendency for the fibres treated with (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) to form a 3D network, resulting in the lowest c*. For the TEMPO-oxidised CNF suspensions, it was also found that aggregation is improved at acidic pH conditions due to lower charge repulsion among fibrils, leading to an increase in the suspension viscosity as well as higher apparent yield stresses. TEMPO CNF suspensions with a low content of carboxylic groups tend to precipitate at moderately acidic pH values.

11.
Cells ; 13(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38667269

RESUMO

Fabry Disease (FD) is one of the most prevalent lysosomal storage disorders, resulting from mutations in the GLA gene located on the X chromosome. This genetic mutation triggers glo-botriaosylceramide (Gb-3) buildup within lysosomes, ultimately impairing cellular functions. Given the role of lysosomes in immune cell physiology, FD has been suggested to have a profound impact on immunological responses. During the past years, research has been focusing on this topic, and pooled evidence strengthens the hypothesis that Gb-3 accumulation potentiates the production of pro-inflammatory mediators, revealing the existence of an acute inflammatory process in FD that possibly develops to a chronic state due to stimulus persistency. In parallel, extracellular vesicles (EVs) have gained attention due to their function as intercellular communicators. Considering EVs' capacity to convey cargo from parent to distant cells, they emerge as potential inflammatory intermediaries capable of transporting cytokines and other immunomodulatory molecules. In this review, we revisit the evidence underlying the association between FD and altered immune responses and explore the potential of EVs to function as inflammatory vehicles.


Assuntos
Exossomos , Doença de Fabry , Inflamação , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Humanos , Inflamação/patologia , Exossomos/metabolismo , Animais , Vesículas Extracelulares/metabolismo
12.
Biofouling ; 29(8): 1015-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23998251

RESUMO

Biofilms are commonly associated with an increased risk of patient infection. In peritoneal dialysis (PD), catheter associated infection, especially peritonitis, remains a clinically relevant problem. Although the presence of a biofilm is recognized in relapsing, repeat, and catheter-related peritonitis, it remains poorly characterized. In this review, an update on the role of biofilms in PD infections is presented. The emerging concept that host cells and tissue associated biofilms, in addition to the biofilms on the catheters themselves, contribute to the recalcitrance of infections is discussed. Furthermore, the evidence of biofilms on PD catheters, their developmental stages, and the possible influence of the PD environment are reviewed. The focus is given to ex vivo and in vitro studies that contribute to the elucidation of the interplay between host, microbial, and dialysis factors. The key issues that are still to be answered and the challenges to clinical practice are discussed.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes , Catéteres/microbiologia , Fungos/fisiologia , Peritonite/microbiologia , Humanos , Diálise Peritoneal
13.
Front Microbiol ; 14: 1266261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840746

RESUMO

Mycobacterium ulcerans causes Buruli Ulcer, a neglected infectious skin disease that typically progresses from an early non-ulcerative lesion to an ulcer with undermined edges. If not promptly treated, these lesions can lead to severe disfigurement and disability. The standard antibiotic regimen for Buruli Ulcer treatment has been oral rifampicin combined with intramuscular streptomycin administered daily for 8 weeks. However, there has been a recent shift toward replacing streptomycin with oral clarithromycin. Despite the advantages of this antibiotic regimen, it is limited by low compliance, associated side effects, and refractory efficacy for severe ulcerative lesions. Therefore, new drug candidates with a safer pharmacological spectrum and easier mode of administration are needed. Statins are lipid-lowering drugs broadly used for dyslipidemia treatment but have also been reported to have several pleiotropic effects, including antimicrobial activity against fungi, parasites, and bacteria. In the present study, we tested the susceptibility of M. ulcerans to several statins, namely atorvastatin, simvastatin, lovastatin and fluvastatin. Using broth microdilution assays and cultures of M. ulcerans-infected macrophages, we found that atorvastatin, simvastatin and fluvastatin had antimicrobial activity against M. ulcerans. Furthermore, when using the in vitro checkerboard assay, the combinatory additive effect of atorvastatin and fluvastatin with the standard antibiotics used for Buruli Ulcer treatment highlighted the potential of statins as adjuvant drugs. In conclusion, statins hold promise as potential treatment options for Buruli Ulcer. Further studies are necessary to validate their effectiveness and understand the mechanism of action of statins against M. ulcerans.

14.
Polymers (Basel) ; 15(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37514527

RESUMO

Cellulose is the most abundant renewable polymer on Earth and can be obtained from several different sources, such as trees, grass, or biomass residues. However, one of the issues is that not all the fractionation processes are eco-friendly and are essentially based on cooking the lignocellulose feedstock in a harsh chemical mixture, such as NaOH + Na2S, and water, to break loose fibers. In the last few years, new sustainable fractionation processes have been developed that enable the obtaining of cellulose fibers in a more eco-friendly way. As a raw material, cellulose's use is widely known and established in many areas. Additionally, its products/derivatives are recognized to have a far better environmental impact than fossil-based materials. Examples are textiles and packaging, where forest-based fibers may contribute to renewable and biodegradable substitutes for common synthetic materials and plastics. In this review, some of the main structural characteristics and properties of cellulose, recent green extraction methods/strategies, chemical modification, and applications of cellulose derivatives are discussed.

15.
Bioeng Transl Med ; 8(3): e10504, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206216

RESUMO

Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)-based spongy-like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin-resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic-associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA-infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration.

16.
Int J Biol Macromol ; 248: 125886, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37481180

RESUMO

The use of cellulose micro/nanofibrils (CMNFs) as reinforcement paper additive at industrial scale is delayed due to inconsistent results, suggesting a lack of proper consideration of some key parameters. The high influence of fibrillated nanocellulose dispersion has been recently identified as a key parameter for paper bulk reinforcement but it has not been studied for surface coating applications yet. This paper studies the effect of CMNF dispersion degree prior to their addition and during mixing with starch on the reinforcement of paper by coating. Results show that this effect depends on the type of CMNFs since it is related to the surface interactions. For a given formulation, a correlation is observed between the CMNF dispersion and the CMNF/starch mixing agitation with the rheology of the coating formulation which highly affects the paper properties. The optimal dispersion degree is different for each nanocellulose, but the best mechanical properties were always achieved at the lowest viscosity of the coating formulation. In general, the initial state of the nanocellulose 3D network, influences the mixing and smooth application of the coating and affects the reinforcement effect. Therefore, the CMNF industrial implementation in coating formulations will be facilitated by the on-line control of formulations prior to their surface application.


Assuntos
Celulose , Indústrias , Reologia , Amido , Viscosidade
17.
Bioengineering (Basel) ; 10(8)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37627871

RESUMO

Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.

18.
Lancet Reg Health Am ; 21: 100498, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37187486

RESUMO

Background: Dengue is a global problem that seems to be worsening, as hyper-urbanization associated with climate change has led to a significant increase in the abundance and geographical spread of its principal vector, the Aedes aegypti mosquito. Currently available solutions have not been able to stop the spread of dengue which shows the urgent need to implement alternative technologies as practical solutions. In a previous pilot trial, we demonstrated the efficacy and safety of the method 'Natural Vector Control' (NVC) in suppressing the Ae. aegypti vector population and in blocking the occurrence of an outbreak of dengue in the treated areas. Here, we expand the use of the NVC program in a large-scale 20 months intervention period in an entire city in southern Brazil. Methods: Sterile male mosquitoes were produced from locally sourced Ae. aegypti mosquitoes by using a treatment that includes double-stranded RNA and thiotepa. Weekly massive releases of sterile male mosquitoes were performed in predefined areas of Ortigueira city from November 2020 to July 2022. Mosquito monitoring was performed by using ovitraps during the entire intervention period. Dengue incidence data was obtained from the Brazilian National Disease Surveillance System. Findings: During the two epidemiological seasons, the intervention in Ortigueira resulted in up to 98.7% suppression of live progeny of field Ae. aegypti mosquitoes recorded over time. More importantly, when comparing the 2020 and 2022 dengue outbreaks that occurred in the region, the post-intervention dengue incidence in Ortigueira was 97% lower compared to the control cities. Interpretation: The NVC method was confirmed to be a safe and efficient way to suppress Ae. aegypti field populations and prevent the occurrence of a dengue outbreak. Importantly, it has been shown to be applicable in large-scale, real-world conditions. Funding: This study was funded by Klabin S/A and Forrest Innovations Ltd.

19.
Sci Adv ; 9(31): eadg2122, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37540749

RESUMO

Since the initial spread of severe acute respiratory syndrome coronavirus 2 infection, several viral variants have emerged and represent a major challenge for immune control, particularly in the context of vaccination. We evaluated the quantity, quality, and persistence of immunoglobulin G (IgG) and IgA in individuals who received two or three doses of messenger RNA (mRNA) vaccines, compared with previously infected vaccinated individuals. We show that three doses of mRNA vaccine were required to match the humoral responses of preinfected vaccinees. Given the importance of antibody-dependent cell-mediated immunity against viral infections, we also measured the capacity of IgG to recognize spike variants expressed on the cell surface and found that cross-reactivity was also strongly improved by repeated vaccination. Last, we report low levels of CXCL13, a surrogate marker of germinal center activation and formation, in vaccinees both after two and three doses compared with preinfected individuals, providing a potential explanation for the short duration and low quality of Ig induced.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , Anticorpos Antivirais , Vacinação , Imunoglobulina G , RNA Mensageiro , Quimiocina CXCL13/genética
20.
Nat Commun ; 14(1): 1772, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997530

RESUMO

Several millions of individuals are estimated to develop post-acute sequelae SARS-CoV-2 condition (PASC) that persists for months after infection. Here we evaluate the immune response in convalescent individuals with PASC compared to convalescent asymptomatic and uninfected participants, six months following their COVID-19 diagnosis. Both convalescent asymptomatic and PASC cases are characterised by higher CD8+ T cell percentages, however, the proportion of blood CD8+ T cells expressing the mucosal homing receptor ß7 is low in PASC patients. CD8 T cells show increased expression of PD-1, perforin and granzyme B in PASC, and the plasma levels of type I and type III (mucosal) interferons are elevated. The humoral response is characterized by higher levels of IgA against the N and S viral proteins, particularly in those individuals who had severe acute disease. Our results also show that consistently elevated levels of IL-6, IL-8/CXCL8 and IP-10/CXCL10 during acute disease increase the risk to develop PASC. In summary, our study indicates that PASC is defined by persisting immunological dysfunction as late as six months following SARS-CoV-2 infection, including alterations in mucosal immune parameters, redistribution of mucosal CD8+ß7Integrin+ T cells and IgA, indicative of potential viral persistence and mucosal involvement in the etiopathology of PASC.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Doença Aguda , Linfócitos T CD8-Positivos , Teste para COVID-19 , Progressão da Doença , Imunoglobulina A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA