Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharm Sci ; 113(3): 669-679, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37611666

RESUMO

Orbital shaking in a glass vial is a commonly used forced degradation test to evaluate protein propensity for agitation-induced aggregation. Vial shaking in horizontal orientation has been widely recommended to maximize the air-liquid interface area while ensuring solution contact with the stopper. We evaluated the impact of shaking orbit diameter and frequency, and glass vial orientation (horizontal versus vertical) on the aggregation of three proteins prepared in surfactant-free formulation buffers. As soon as an orbit-specific frequency threshold was reached, an increase in turbidity was observed for the three proteins in vertical orientation only when using a 3 mm agitation orbit, and in horizontal orientation only when using a 30 mm agitation orbit. Orthogonal analyses confirmed turbidity was linked to protein aggregation. The most turbid samples had a visually more homogeneous appearance in vertical than in horizontal orientation, in line with the predicted dispersion of air and liquid phases obtained from computational fluid dynamics agitation simulations. Both shaking orbits were used to assess the performance of nonionic surfactants. We show that the propensity of a protein to aggregate in a vial agitated in horizontal or vertical orientation depends on the shaking orbit, and confirm that Brij® 58 and FM1000 prevent proteins from agitation-induced aggregation at lower concentrations than polysorbate 80.


Assuntos
Órbita , Proteínas , Polissorbatos , Tensoativos
2.
MAbs ; 15(1): 2160229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36788124

RESUMO

TrYbe® is an Fc-free therapeutic antibody format, capable of engaging up to three targets simultaneously, with long in vivo half-life conferred by albumin binding. This format is shown by small-angle X-ray scattering to be conformationally flexible with favorable 'reach' properties. We demonstrate the format's broad functionality by co-targeting of soluble and cell surface antigens. The benefit of monovalent target binding is illustrated by the lack of formation of large immune complexes when co-targeting multivalent antigens. TrYbes® are manufactured using standard mammalian cell culture and protein A affinity capture processes. TrYbes® have been formulated at high concentrations and have favorable drug-like properties, including stability, solubility, and low viscosity. The unique functionality and inherent developability of the TrYbe® makes it a promising multi-specific antibody fragment format for antibody therapy.


Assuntos
Fragmentos Fc das Imunoglobulinas , Fragmentos de Imunoglobulinas , Animais , Meia-Vida , Fragmentos Fc das Imunoglobulinas/química , Mamíferos/metabolismo
3.
Int J Pharm ; 566: 291-298, 2019 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-31150774

RESUMO

In this study, the possibility of producing highly antibody-loaded microparticles with sustained-release properties was evaluated. Polyclonal immunoglobulin G (IgG) was used as a model of antibody and its encapsulation into poly(lactide-co-glycolide) acid (PLGA) microparticles was performed by spray-drying a water-in-oil (w/o) emulsion. It was demonstrated that the use of the Resomer® RG505 PLGA allowed an IgG loading of 20% w/w with an encapsulation efficiency higher than 85%. The produced microparticles were characterized by a mean diameter lower than 10 µm. The burst effect was shown to reach a maximal value of 40%. IgG stability after encapsulation was also assessed. The use of this single PLGA provided a lag time of 3 months which dramatically slowed down the release rate after the initial release of the encapsulated IgG. Using blends of PLGA characterized by different inherent viscosities allowed decreasing the lag time and modulating the dissolution profile of the IgG from the spray-dried microparticles. Therefore, spray-drying a water-in-oil emulsion appeared to be a promising strategy to produce highly antibody-loaded microparticles characterized by sustained-release properties.


Assuntos
Imunoglobulina G/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Preparações de Ação Retardada/química , Dessecação , Composição de Medicamentos , Liberação Controlada de Fármacos , Emulsões , Água/química
4.
Eur J Pharm Biopharm ; 86(3): 393-403, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24184674

RESUMO

Antibodies (Abs) are prone to a variety of physical and chemical degradation pathways, which require the development of stable formulations and specific delivery strategies. In this study, injectable biodegradable and biocompatible polymeric particles were employed for controlled-release dosage forms and the encapsulation of antibodies into polylactide-co-glycolide (PLGA) based microspheres was explored. In order to avoid stability issues which are commonly described when water-in-oil (w/o) emulsion is used, a solid-in-oil-in-water (s/o/w) method was developed and optimized. The solid phase was made of IgG microparticles and the s/o/w process was evaluated as an encapsulation method using a model Ab molecule (polyclonal bovine immunoglobulin G (IgG)). The methylene chloride (MC) commonly used for an encapsulation process was replaced by ethyl acetate (EtAc), which was considered as a more suitable organic solvent in terms of both environmental and human safety. The effects of several processes and formulation factors were evaluated on IgG:PLGA microsphere properties such as: particle size distribution, drug loading, IgG stability, and encapsulation efficiency (EE%). Several formulations and processing parameters were also statistically identified as critical to get reproducible process (e.g. the PLGA concentration, the volume of the external phase, the emulsification rate, and the quantity of IgG microparticles). The optimized encapsulation method has shown a drug loading of up to 6% (w/w) and an encapsulation efficiency of up to 60% (w/w) while preserving the integrity of the encapsulated antibody. The produced microspheres were characterized by a d(0.9) lower than 110 µm and showed burst effect lower than 50% (w/w).


Assuntos
Composição de Medicamentos/métodos , Imunoglobulina G/química , Ácido Láctico/química , Microesferas , Ácido Poliglicólico/química , Animais , Bovinos , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA