RESUMO
The basal plane of graphene can function as a selective barrier that is permeable to protons1,2 but impermeable to all ions3,4 and gases5,6, stimulating its use in applications such as membranes1,2,7,8, catalysis9,10 and isotope separation11,12. Protons can chemically adsorb on graphene and hydrogenate it13,14, inducing a conductor-insulator transition that has been explored intensively in graphene electronic devices13-17. However, both processes face energy barriers1,12,18 and various strategies have been proposed to accelerate proton transport, for example by introducing vacancies4,7,8, incorporating catalytic metals1,19 or chemically functionalizing the lattice18,20. But these techniques can compromise other properties, such as ion selectivity21,22 or mechanical stability23. Here we show that independent control of the electric field, E, at around 1 V nm-1, and charge-carrier density, n, at around 1 × 1014 cm-2, in double-gated graphene allows the decoupling of proton transport from lattice hydrogenation and can thereby accelerate proton transport such that it approaches the limiting electrolyte current for our devices. Proton transport and hydrogenation can be driven selectively with precision and robustness, enabling proton-based logic and memory graphene devices that have on-off ratios spanning orders of magnitude. Our results show that field effects can accelerate and decouple electrochemical processes in double-gated 2D crystals and demonstrate the possibility of mapping such processes as a function of E and n, which is a new technique for the study of 2D electrode-electrolyte interfaces.
Assuntos
Grafite , Prótons , Grafite/química , Hidrogenação , CatáliseRESUMO
Defect-free graphene is impermeable to all atoms1-5 and ions6,7 under ambient conditions. Experiments that can resolve gas flows of a few atoms per hour through micrometre-sized membranes found that monocrystalline graphene is completely impermeable to helium, the smallest atom2,5. Such membranes were also shown to be impermeable to all ions, including the smallest one, lithium6,7. By contrast, graphene was reported to be highly permeable to protons, nuclei of hydrogen atoms8,9. There is no consensus, however, either on the mechanism behind the unexpectedly high proton permeability10-14 or even on whether it requires defects in graphene's crystal lattice6,8,15-17. Here, using high-resolution scanning electrochemical cell microscopy, we show that, although proton permeation through mechanically exfoliated monolayers of graphene and hexagonal boron nitride cannot be attributed to any structural defects, nanoscale non-flatness of two-dimensional membranes greatly facilitates proton transport. The spatial distribution of proton currents visualized by scanning electrochemical cell microscopy reveals marked inhomogeneities that are strongly correlated with nanoscale wrinkles and other features where strain is accumulated. Our results highlight nanoscale morphology as an important parameter enabling proton transport through two-dimensional crystals, mostly considered and modelled as flat, and indicate that strain and curvature can be used as additional degrees of freedom to control the proton permeability of two-dimensional materials.
RESUMO
The tight-binding method is used to investigate the electronic and magnetic properties of borophene nano-ribbons (BNRs) in the presence of a perpendicular magnetic field. Most BNRs exhibit metallic characteristics due to edge bands. Additionally, the appearance of Landau levels (LLs) is strongly influenced by the edge states, contrasting with the sheet platform which produces distinct LLs. We also investigated single atomic vacancy disorders in BNRs and observed localized vacancy states (LVSs) resulting from atomic disorder. Both LVSs and LLs are influenced by the edge states, underscoring that the electronic and magnetic properties of BNRs are strongly edge-dependent. This aspect is crucial for consideration in experimental, theoretical, and computational studies.
RESUMO
Controlled transport of water molecules through membranes and capillaries is important in areas as diverse as water purification and healthcare technologies1-7. Previous attempts to control water permeation through membranes (mainly polymeric ones) have concentrated on modulating the structure of the membrane and the physicochemical properties of its surface by varying the pH, temperature or ionic strength3,8. Electrical control over water transport is an attractive alternative; however, theory and simulations9-14 have often yielded conflicting results, from freezing of water molecules to melting of ice14-16 under an applied electric field. Here we report electrically controlled water permeation through micrometre-thick graphene oxide membranes17-21. Such membranes have previously been shown to exhibit ultrafast permeation of water17,22 and molecular sieving properties18,21, with the potential for industrial-scale production. To achieve electrical control over water permeation, we create conductive filaments in the graphene oxide membranes via controllable electrical breakdown. The electric field that concentrates around these current-carrying filaments ionizes water molecules inside graphene capillaries within the graphene oxide membranes, which impedes water transport. We thus demonstrate precise control of water permeation, from ultrafast permeation to complete blocking. Our work opens up an avenue for developing smart membrane technologies for artificial biological systems, tissue engineering and filtration.
RESUMO
Experimental realizations of two-dimensional materials are hardly free of structural defects such as e.g. vacancies, which, in turn, modify drastically its pristine physical defect-free properties. In this work, we explore effects due to point defect clustering on the electronic and transport properties of bilayer graphene nanoribbons, for AA and AB stacking and zigzag and armchair boundaries, by means of the tight-binding approach and scattering matrix formalism. Evident vacancy concentration signatures exhibiting a maximum amplitude and an universality regardless of the system size, stacking and boundary types, in the density of states around the zero-energy level are observed. Our results are explained via the coalescence analysis of the strong sizeable vacancy clustering effect in the system and the breaking of the inversion symmetry at high vacancy densities, demonstrating a similar density of states for two equivalent degrees of concentration disorder, below and above the maximum value.
RESUMO
Terahertz (THz) magneto-optical (MO) properties of monolayer (ML) tungsten disulfide (WS2), placed on different substrates and subjected to external magnetic fields, are studied using THz time-domain spectroscopy (TDS). We find that the THz MO conductivity exhibits a nearly linear response in a weak magnetic field, while a distinctly nonlinear/oscillating behavior is found in strong magnetic fields owing to strong substrate-induced random impurity scattering and interactions. The THz MO response of ML WS2 depends sensitively on the choice of the substrates, which we trace back to electronic localization and the impact of the substrates on the Landau level (LL) spectrum. Our results provide an in-depth understanding of the THz MO properties of ML WS2/substrate systems, especially the effect of substrates, which can be utilized to realize atomically thin THz MO nano-devices.
RESUMO
The moiré pattern observed in stacked noncommensurate crystal lattices, such as heterobilayers of transition metal dichalcogenides, produces a periodic modulation of their band gap. Excitons subjected to this potential landscape exhibit a band structure that gives rise to a quasiparticle dubbed the moiré exciton. In the case of MoS_{2}/WSe_{2} heterobilayers, the moiré trapping potential has honeycomb symmetry and, consequently, the moiré exciton band structure is the same as that of a Dirac-Weyl fermion, whose mass can be further tuned down to zero with a perpendicularly applied field. Here we show that, analogously to other Dirac-like particles, the moiré exciton exhibits a trembling motion, also known as Zitterbewegung, whose long timescales are compatible with current experimental techniques for exciton dynamics. This promotes the study of the dynamics of moiré excitons in van der Waals heterostructures as an advantageous solid-state platform to probe Zitterbewegung, broadly tunable by gating and interlayer twist angle.
RESUMO
Using first-principles many-body perturbation theory, we investigate the optical properties of 8-Pmmn borophene at two levels of approximations; the GW method considering only the electron-electron interaction and the GW in combination with the Bethe-Salpeter equation including electron-hole coupling. The band structure exhibits anisotropic Dirac cones with semimetallic character. The optical absorption spectra are obtained for different light polarizations and we predict strong optical absorbance anisotropy. The absorption peaks undergo a global redshift when the electron-hole interaction is taken into account due to the formation of bound excitons which have an anisotropic excitonic wave function.
RESUMO
Two-dimensional materials composed of transition metal carbides and nitrides (MXenes) are poised to revolutionize energy conversion and storage. In this work, we used density functional theory (DFT) to investigate the adsorption of Mg and Na adatoms on five M2CS2 monolayers (where M = Mo, Nb, Ti, V, and Zr) for battery applications. We assessed the stability of the adatom (i.e. Na and Mg)-monolayer systems by calculating adsorption and formation energies, as well as voltages as a function of surface coverage. For instance, we found that Mo2CS2 cannot support a full layer of Na nor even a single Mg atom. Na and Mg exhibit the strongest binding on Zr2CS2, followed by Ti2CS2, Nb2CS2 and V2CS2. Using the nudged elastic band method (NEB), we computed promising diffusion barriers for both dilute and nearly full ion surface coverage cases. In the dilute ion adsorption case, a single Mg and Na atom on Ti2CS2 experience â¼0.47 eV and â¼0.10 eV diffusion barriers between the lowest energy sites, respectively. For a nearly full surface coverage, a Na ion moving on Ti2CS2 experiences a â¼0.33 eV energy barrier, implying a concentration-dependent diffusion barrier. Our molecular dynamics results indicate that the three (one) layers (layer) of the Mg (Na) ion on both surfaces of Ti2CS2 remain stable at T = 300 K. While, according to voltage calculations, Zr2CS2 can store Na up to three atomic layers, our MD simulations predict that the outermost layers detach from the Zr2CS2 monolayer due to the weak interaction between Na ions and the monolayer. This suggests that MD simulations are essential to confirm the stability of an ion-electrode system - an insight that is mostly absent in previous studies.
RESUMO
By means of density functional theory based first-principles calculations, the structural, vibrational, and electronic properties of 1H- and 1T-phases of single-layer CaX2 (X = F, Cl, Br, or I) structures are investigated. Our results reveal that both the 1H- and 1T-phases are dynamically stable in terms of their phonon band dispersions with the latter being the energetically favorable phase for all single-layers. In both phases of single-layer CaX2 structures, significant phonon softening occurs as the atomic radius increases. In addition, each structural phase exhibits distinctive Raman active modes that enable one to characterize either the phase or the structure via Raman spectroscopy. The electronic band dispersions of single-layer CaX2 structures reveal that all structures are indirect bandgap insulators with a decrease in bandgaps from fluorite to iodide crystals. Furthermore, the calculated linear elastic constants, in-plane stiffness, and Poisson ratio indicate the ultra-soft nature of CaX2 single-layers, which is quite important for their nanoelastic applications. Overall, our study reveals that with their dynamically stable 1T- and 1H-phases, single-layers of CaX2 crystals can be alternative ultra-thin insulators.
RESUMO
Atomic vacancies and nanopores act as local scattering centers and modify the transport properties of charge carriers in phosphorene nanoribbons (PNRs). We investigate the influence of such atomic defects on the electronic transport of multi-terminal PNR. We use the non-equilibrium Green's function approach within the tight-binding framework to calculate the transmission coefficient and the conductance. Terminals induce band mixing resulting in oscillations in the conductance. In the presence of atomic vacancies and nanopores the conductance between non-axial terminals exhibit constructive scattering, which is in contrast to mono-axial two-terminal systems where the conductance exhibits destructive scattering. This can be understood from the spatial local density of states of the transport modes in the system. Our results provide fundamental insights into the electronic transport in PNR-based multi-terminal systems and into the ability of atomic defects and nanopores through tuning the transport properties.
RESUMO
Using the simplified linear combination of atomic orbitals (LCAO) method in combination with ab initio calculations, we construct a tight-binding (TB) model for two different crystal structures of monolayer gallium: a100- and b010-Gallenene. The analytical expression for the Hamiltonian and numerical results for the overlap matrix elements between different orbitals of the Ga atoms and for the Slater and Koster (SK) integrals are obtained. We find that the compaction of different structures affects significantly the formation of the orbitals. The results for a100-Gallenene can be very well explained with an orthogonal basis set, while for b010-Gallenene we have to assume a non-orthogonal basis set in order to construct the TB model. Moreover, the transmission properties of nanoribbons of both monolayers oriented along the AC and ZZ directions are also investigated and it is shown that both AC- and ZZ-b010-Gallenene nanoribbons exhibit semiconducting behavior with zero transmission while those of a100-Gallenene nanoribbons are metallic.
RESUMO
When confined between graphene layers, water behaves differently from the bulk and exhibits unusual properties such as fast water flow and ordering into a crystal. The hydrogen-bonded network is affected by the limited space and by the characteristics of the confining walls. The presence of an extraordinary number of hydronium and hydroxide ions in narrow channels has the following effects: (i) they affect water permeation through the channel, (ii) they may interact with functional groups on the graphene oxide surface and on the edges, and (iii) they change the thermochemistry of water, which are fundamentally important to understand, especially when confined water is subjected to an external electric field. Here we study the physical properties of water when confined between two graphene sheets and containing hydronium and hydroxide. We found that: (i) there is a disruption in the solvation structure of the ions, which is also affected by the layered structure of confined water, (ii) hydronium and hydroxide occupy specific regions inside the nanochannel, with a prevalence of hydronium (hydroxide) ions at the edges (interior), and (iii) ions recombine more slowly in confined systems than in bulk water, with the recombination process depending on the channel height and commensurability between the size of the molecules and the nanochannel height - a decay of 20% (40%) in the number of ions in 8 ps is observed for a channel height of h = 7 Å (bulk water). Our work reveals distinctive properties of water confined in a nanocapillary in the presence of additional hydronium and hydroxide ions.
RESUMO
Recent experimental work on the application of graphene for novel illumination motivated us to present a theoretical study of the blackbody radiation emission from a freely suspended graphene driven by a dc electric field. Strong terahertz (THz) emission, with intensity up to mW/cm2, can be generated with increasing electric field strength due to the heating of electrons in graphene. We show that the intensity of the THz emission generated electrically from graphene depends rather sensitively on the lattice temperature in relatively weak electric fields, whereas it is less sensitive to the lattice temperature in relative strong electric fields. Our study highlights the practical application of graphene as intense THz source where the radiation is generated electrically.
RESUMO
Coupled 2D sheets of electrons and holes are predicted to support novel quantum phases. Two experiments of Coulomb drag in electron-hole (e-h) double bilayer graphene (DBLG) have reported an unexplained and puzzling sign reversal of the drag signal. However, we show that this effect is due to the multiband character of DBLG. Our multiband Fermi liquid theory produces excellent agreement and captures the key features of the experimental drag resistance for all temperatures. This demonstrates the importance of multiband effects in DBLG: they have a strong effect not only on superfluidity, but also on the drag.
RESUMO
Tunable transport properties and Fano resonances are predicted in a circular bilayer phosphorene nanoring. The conductance exhibits Fano resonances with varying incident energy and applied perpendicular magnetic field. These Fano resonance peaks can be accurately fitted with the well known Fano curves. When a magnetic field is applied to the nanoring, the conductance oscillates periodically with magnetic field which is reminiscent of the Aharonov-Bohm effect. Fano resonances are tightly related to the discrete states in the central nanoring, some of which are tunable by the magnetic field.
RESUMO
Using first principles calculations, we study the structural and phononic properties of the recently synthesized Janus type single layers of molybdenum dichalcogenides. The Janus MoSSe single layer possesses 2H crystal structure with two different chalcogenide sides that lead to out-of-plane anisotropy. By virtue of the asymmetric structure of the ultra-thin Janus type crystal, we induced the out-of-plane anisotropy to show the distinctive vertical pressure effect on the vibrational properties of the Janus material. It is proposed that for the corresponding Raman active optical mode of the Janus structure, the phase modulation and the magnitude ratio of the strained atom and its first neighbor atom adjust the distinctive change in the eigen-frequencies and Raman activity. Moreover, a strong variation in the Raman activity of the Janus structure is obtained under bivertical and univertical strains. Not only eigen-frequency shifts but also Raman activities of the optical modes of the Janus structure exhibit distinguishable features. This study reveals that the vertical anisotropic feature of the Janus structure under Raman measurement allows us to distinguish which side of the Janus crystal interacts with the externals (substrate, functional adlayers, or dopants).
RESUMO
Superfluidity in coupled electron-hole sheets of bilayer graphene is predicted here to be multicomponent because of the conduction and valence bands. We investigate the superfluid crossover properties as functions of the tunable carrier densities and the tunable energy band gap E_{g}. For small band gaps there is a significant boost in the two superfluid gaps, but the interaction-driven excitations from the valence to the conduction band can weaken the superfluidity, even blocking the system from entering the Bose-Einstein condensate (BEC) regime at low densities. At a given larger density, a band gap E_{g}â¼80-120 meV can carry the system into the strong-pairing multiband BCS-BEC crossover regime, the optimal range for realization of high-T_{c} superfluidity.
RESUMO
Recently, black phosphorus quantum dots were fabricated experimentally. Motivated by these experiments, we theoretically investigate the electronic and optical properties of rectangular phosphorene quantum dots (RPQDs) in the presence of an in-plane electric field and a perpendicular magnetic field. The energy spectra and wave functions of RPQDs are obtained numerically using the tight-binding approach. We find edge states within the band gap of the RPQD which are well separated from the bulk states. In an undoped RPQD and for in-plane polarized light, due to the presence of well-defined edge states, we find three types of optical transitions which are between the bulk states, between the edge and bulk states, and between the edge states. The electric and magnetic fields influence the bulk-to-bulk, edge-to-bulk, and edge-to-edge transitions differently due to the different responses of bulk and edge states to these fields.
RESUMO
We compare classical versus quantum electron transport in recently investigated magnetic focusing devices (Bhandari et al 2016 Nano Lett. 16 1690) exposed to the perturbing potential of a scanning gate microscope (SGM). Using the Landauer-Büttiker formalism for a multi-terminal device, we calculate resistance maps that are obtained as the SGM tip is scanned over the sample. There are three unique regimes in which the scanning tip can operate (focusing, repelling, and mixed regime) which are investigated. Tip interacts mostly with electrons with cyclotron trajectories passing directly underneath it, leaving a trail of modified current density behind it. Other (indirect) trajectories become relevant when the tip is placed near the edges of the sample, and current is scattered between the tip and the edge. We point out that, in contrast to SGM experiments on gapped semiconductors, the STM tip can induce a pn junction in graphene, which improves contrast and resolution in SGM. We also discuss possible explanations for spatial asymmetry of experimentally measured resistance maps, and connect it with specific configurations of the measuring probes.